期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Cumulative Nanosecond Laser Pulses on the Plasma Emission Intensity and Surface Morphology of Pt-and Ag-Ion Deposited Silicon
1
作者 Khurram SIRAJ Muhammad Zakria BUTT +3 位作者 Muhammad KHALEEQ-UR-RAHMAN Muhammad Shahid RAFIQUE Saima RAFIQUE FAKHAR-UN-NISA 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第4期333-337,共5页
In this work, the laser induced plasma plume characteristics and surface morphology of Pt- and Ag-ion deposited silicon were studied. The deposited silicon was exposed to cumulative laser pulses. The plasma plume imag... In this work, the laser induced plasma plume characteristics and surface morphology of Pt- and Ag-ion deposited silicon were studied. The deposited silicon was exposed to cumulative laser pulses. The plasma plume images produced by each laser shot were captured through a computer controlled image capturing system and analyzed with image-J software. The integrated optical emission intensity of both samples showed an increasing trend with increasing pulses. Agion deposited silicon showed higher optical emission intensity as compared to Pt-ion deposited silicon, suggesting that more damage occurred to the silicon by Ag ions, which was confirmed by SRIM/TRIM simulations. The surface morphologies of both samples were examined by optical microscope showing thermal, exfoliational and hydrodynamical sputtering processes along with the re-deposition of the material, debris and heat affected zones' formation. The crater of Ption deposited silicon was deeper but had less lateral damage than Agion deposited silicon. The novel results clearly indicated that the ion deposited silicon surface produced incubation centers, which led to more absorption of incident light resulting into a higher emission intensity from the plasma plume and deeper crater formation as compared to pure silicon. The approach can be effectively utilized in the laser induced breakdown spectroscopy technique, which endures poor limits of detection. 展开更多
关键词 ions deposited silicon laser irradiation plasma plume emission intensity crater formation
下载PDF
Effect of parameters on Si plasma emission in collinear double-pulse laser-induced breakdown spectroscopy 被引量:3
2
作者 Fang-Fang Chen Xue-Jiao Su Wei-Dong Zhou 《Frontiers of physics》 SCIE CSCD 2015年第5期83-90,共8页
Collinear dual-pulse laser-induced breakdown spectroscopy was carried out on Si crystal by using a pair of nanosecond Nd:YAG laser sources emitting at 1064 nm. The spectral intensities and signal- to-noise ratios of ... Collinear dual-pulse laser-induced breakdown spectroscopy was carried out on Si crystal by using a pair of nanosecond Nd:YAG laser sources emitting at 1064 nm. The spectral intensities and signal- to-noise ratios of selected Si atomic and ionic lines were used to evaluate the optical emission. The optical emission intensity was recorded while varying the interpulse delay time and energy ratio of the two pulsed lasers. The effects of the data acquisition delay time on the line intensity and signal-to-noise ratio have been investigated as well. Based on the results, the optimal interpulse delay time, energy ratio of the two pulsed lasers, and data acquisition delay time for achieving the maximum atomic and ionic line intensities were found for generation of Si plasma with the collinear dual-pulse laser approach. The dominant mechanism for the observed line intensity variation was also discussed. In addition, the plasma temperature and electron number density at different gate delay times and different interpulse delay times were derived. A significant influence of plasma shielding on the electron temperature and electron number density at shorter interpulse delay times was observed. 展开更多
关键词 laser-induced breakdown spectroscopy collinear dual-pulse plasma emission intensity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部