Carbyne-enriched nanomaterials are of current interest in nanotechnology-related applications.The properties of these nanomaterials greatly depend on their production process.In particular,structural self-organization...Carbyne-enriched nanomaterials are of current interest in nanotechnology-related applications.The properties of these nanomaterials greatly depend on their production process.In particular,structural self-organization and auto-synchronization of nanostructures are typical phenomena observed during the growth and heteroatom-doping of carbyne-enriched nanostructured metamaterials by the ion-assisted pulse-plasma deposition method.Accordingly,fine tuning of these processes may be seen as the key step to the predictive designing of carbyneenriched nano-matrices with improved properties.In particular,we propose an innovative concept,connected with application of the vibrational-acoustic effects and based on universal Cymatics mechanisms.These effects are used to induce vibration-assisted self-organized wave patterns together with the simultaneous manipulation of their properties through an electric field.Interaction between the inhomogeneous electric field distribution generated on the vibrating layer and the plasma ions serves as the additional energizing factor controlling the local pattern formation and self-organization of the nano-structures.展开更多
HfO2 and SiO2 single layer is deposited on glass substrate with plasma ion assistance provided by Leybold advanced plasma source (APS). The deposition is performed with a bias voltage in the range of 70-130 V for Hf...HfO2 and SiO2 single layer is deposited on glass substrate with plasma ion assistance provided by Leybold advanced plasma source (APS). The deposition is performed with a bias voltage in the range of 70-130 V for HfO2, and 70-170 V for SiO2. Optical, structural, mechanical properties, as well as absorption and laser induced damage threshold at 1064 nm of HfO2 and SiO2 single layer deposited with the plasma ion assistance are systematically investigated. With the increase of APS bias voltage, coatings with higher refractive index, reduced surface roughness, and higher laser-induced damage threshold (LIDT) are obtained, and no significant change of the absorption at 1064 nm is observed. For HfO2, a bias voltage can be identified to achieve coatings without any stress. However, too-high bias voltage can cause the increase of surface roughness and stress, and decrease the LIDT. The bias voltage can be properly identified to achieve coatings with desired properties.展开更多
基金This research work is jointly supported and funded by the Scientific and Technological Research Council of Turkey(TÜBİTAK)the Russian Foundation for Basic Research(RFBR)according to the Research Project No.20-58-46014.
文摘Carbyne-enriched nanomaterials are of current interest in nanotechnology-related applications.The properties of these nanomaterials greatly depend on their production process.In particular,structural self-organization and auto-synchronization of nanostructures are typical phenomena observed during the growth and heteroatom-doping of carbyne-enriched nanostructured metamaterials by the ion-assisted pulse-plasma deposition method.Accordingly,fine tuning of these processes may be seen as the key step to the predictive designing of carbyneenriched nano-matrices with improved properties.In particular,we propose an innovative concept,connected with application of the vibrational-acoustic effects and based on universal Cymatics mechanisms.These effects are used to induce vibration-assisted self-organized wave patterns together with the simultaneous manipulation of their properties through an electric field.Interaction between the inhomogeneous electric field distribution generated on the vibrating layer and the plasma ions serves as the additional energizing factor controlling the local pattern formation and self-organization of the nano-structures.
文摘HfO2 and SiO2 single layer is deposited on glass substrate with plasma ion assistance provided by Leybold advanced plasma source (APS). The deposition is performed with a bias voltage in the range of 70-130 V for HfO2, and 70-170 V for SiO2. Optical, structural, mechanical properties, as well as absorption and laser induced damage threshold at 1064 nm of HfO2 and SiO2 single layer deposited with the plasma ion assistance are systematically investigated. With the increase of APS bias voltage, coatings with higher refractive index, reduced surface roughness, and higher laser-induced damage threshold (LIDT) are obtained, and no significant change of the absorption at 1064 nm is observed. For HfO2, a bias voltage can be identified to achieve coatings without any stress. However, too-high bias voltage can cause the increase of surface roughness and stress, and decrease the LIDT. The bias voltage can be properly identified to achieve coatings with desired properties.