In this paper,a non-thermal atmospheric pressure plasma jet at high streaming velocity operating with ambient air is highlighted.In the present technological approach,the employment of air poses a significant challeng...In this paper,a non-thermal atmospheric pressure plasma jet at high streaming velocity operating with ambient air is highlighted.In the present technological approach,the employment of air poses a significant challenge.The high oxygen concentration in air results in a reduced concentration of reactive species in combination with a short species lifetime.The plasma jet assembly presented here contains a special dielectric barrier with a high secondary emission coefficient.In this way,the electron density and in turn the density of reactive species is increased.In addition,the plasma jet assembly is equipped with a short electrode.This leads to a higher voltage across the discharge gap and in turn to an increased density of reactive plasma species.The plasma jet is formed within and emitted by a small conical nozzle.A high-speed gas flow with gas velocity of 340 m/s was achieved at the end of the nozzle.In the jet the concentration of toxic and unwanted neutral plasma species like O3 or NOx is significantly reduced because of the shorter residence time within the plasma.The range of short-lived active plasma species is in turn considerably enhanced.The jet efficiency and action range measured through the oxidation of a test surface were determined by measuring the increase of surface tension of a polypropylene substrate via contact angle measurements after plasma treatment.Numerical modeling of the plasma plume indicates that oxygen atoms are in fact the main active species in the plasma plume.展开更多
Non-thermal plasma jet at atmospheric pressure has recently attracted lots of attention because of its applications in plasma bullet or plasma plume.Thus,we studied on generating plasma jet by coplanar dielectric barr...Non-thermal plasma jet at atmospheric pressure has recently attracted lots of attention because of its applications in plasma bullet or plasma plume.Thus,we studied on generating plasma jet by coplanar dielectric barrier discharge in a device driven by sinusoidal voltage.The processes of plasma discharges in both positive and negative half cycles were recorded using a high-speed ICCD(intensified charge-coupled device)camera;based on the results we estimated the velocity of plasma propagation,and investigated the influence of gas flow on the plasma development.It is shown that the plasma bullets,which have velocity in the order of 103~104m/s,exist only outside the cathode.APPJ(atmospheric pressure plasma jet)is created by the electron beam from the cathode,and then sustained by a strong radial electric field near and outside the cathode.The gas flow influences the APPJ length in air but not the APPJ discharge,while the discharge is affected significantly by the applied voltage.展开更多
A coaxial dielectric barrier discharge plasma jet was designed, which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply, and an atmospheric pressure glow-li...A coaxial dielectric barrier discharge plasma jet was designed, which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply, and an atmospheric pressure glow-like discharge was achieved. Two kinds of typical bacteria, i.e., the Staphylococcus aureus (S. aureus) and Escherichia coil (E. coil), were employed to study the bacterial inactivation mechanism by means of the non-thermal plasma. The killing log value (KLV) of S. aureus reached up to 5.38 with a treatment time of 90 s and that of E. coil up to 5.36 with 60 s, respectively. According to the argon emission spectra of the plasma jet and the scanning electron microscope (SEM) images of the two bacteria before and after the plasma treatment, it is concluded that the reactive species in the argon plasma played a major role in the bacterial inactivation, while the heat, electric field and UV photons had little effect.展开更多
An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless st...An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experi- mental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination pro-cess, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chroma- tism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet.展开更多
This letter reports on the generation and characteristics of a large-scale dielectric barrier discharge plasma jet at atmospheric pressure. With appropriate parameters, diffuse plasma with a 50×5 mm2 cross-sectio...This letter reports on the generation and characteristics of a large-scale dielectric barrier discharge plasma jet at atmospheric pressure. With appropriate parameters, diffuse plasma with a 50×5 mm2 cross-sectional area is obtained. The characteristics of the discharges are diag- nosed by using electrical and optical methods. In addition to being generated in helium, plasma is also generated in a mixed gas of helium and oxygen. The oxygen atomic radiant intensity (3p5P→ 3s5S, 3p3P→3s3S transition) is not proportional to the proportion of oxygen in the gas mixture, as shown by the experimental results.展开更多
To compare the formation mechanisms of He and Ar atmospheric pressure plasma jets(APPJs),an intensified charge-coupled device(ICCD)are utilized to observe the dynamic process of APPJ.The experimental results show that...To compare the formation mechanisms of He and Ar atmospheric pressure plasma jets(APPJs),an intensified charge-coupled device(ICCD)are utilized to observe the dynamic process of APPJ.The experimental results show that,He APPJ is first ignited,which is independent of the dielectric barrier discharge(DBD)between the two wrapped electrodes when the high voltage placed at the downstream.The intensity and APPJ length under positive discharge pulses are bigger than that under negative discharge pulses due to the space charge effect.The He APPJ is formed by the DBD development when the high-voltage electrode placed at the upstream side of tube.However,the plasma plume in Ar APPJ is formed by the propagation of DBD whatever the high-voltage electrode is arranged on upstream or downstream side of ground electrode.The difference in formation mechanism between He and Ar APPJs is mainly caused by the gas properties.Moreover,during the discharges,Ar tends to lead to thermal instability and electron Maxwellian instability.展开更多
In this study, the density of metastable He2* in an atmospheric-pressure plasma jet operating in helium with 0.001% nitrogen has been measured using an auxiliary measuring electrode technique.In the glow discharge mod...In this study, the density of metastable He2* in an atmospheric-pressure plasma jet operating in helium with 0.001% nitrogen has been measured using an auxiliary measuring electrode technique.In the glow discharge mode, waveforms from two grounding electrodes, including one main discharge electrode and one auxiliary electrode, are captured.The isolated current peak formed by Penning ionization in waveforms from the auxiliary measuring electrode is identified to calculate the density of metastable He2*.In our discharge environment, the helium metastable densities along the jet axis direction are between 2.26×1013 and 1.74×1013 cm-3,which is in good agreement with the results measured by other techniques.This measurement technique can be conveniently applied to the diagnosis of metastable He2* in an atmospheric-pressure plasma jet array.展开更多
In this study,the effects of the fluid cooling and electric field line deformation were investigated in a dielectric barrier discharge(DBD)plasma source.The DBD plasma jet is improved by covering the ground electrode ...In this study,the effects of the fluid cooling and electric field line deformation were investigated in a dielectric barrier discharge(DBD)plasma source.The DBD plasma jet is improved by covering the ground electrode and a power electrode with insulating oil.We obtained positive results as insulating oil prevents arc formation,while it improved the supplied power and plasma jet length,and increased radical production.Radical production of this nonthermal plasma jet is studied with polyvinyl alcohol-potassium iodide liquid.展开更多
文摘In this paper,a non-thermal atmospheric pressure plasma jet at high streaming velocity operating with ambient air is highlighted.In the present technological approach,the employment of air poses a significant challenge.The high oxygen concentration in air results in a reduced concentration of reactive species in combination with a short species lifetime.The plasma jet assembly presented here contains a special dielectric barrier with a high secondary emission coefficient.In this way,the electron density and in turn the density of reactive species is increased.In addition,the plasma jet assembly is equipped with a short electrode.This leads to a higher voltage across the discharge gap and in turn to an increased density of reactive plasma species.The plasma jet is formed within and emitted by a small conical nozzle.A high-speed gas flow with gas velocity of 340 m/s was achieved at the end of the nozzle.In the jet the concentration of toxic and unwanted neutral plasma species like O3 or NOx is significantly reduced because of the shorter residence time within the plasma.The range of short-lived active plasma species is in turn considerably enhanced.The jet efficiency and action range measured through the oxidation of a test surface were determined by measuring the increase of surface tension of a polypropylene substrate via contact angle measurements after plasma treatment.Numerical modeling of the plasma plume indicates that oxygen atoms are in fact the main active species in the plasma plume.
基金Project supported by National Natural Science Foundation of China (10875010 11175017).
文摘Non-thermal plasma jet at atmospheric pressure has recently attracted lots of attention because of its applications in plasma bullet or plasma plume.Thus,we studied on generating plasma jet by coplanar dielectric barrier discharge in a device driven by sinusoidal voltage.The processes of plasma discharges in both positive and negative half cycles were recorded using a high-speed ICCD(intensified charge-coupled device)camera;based on the results we estimated the velocity of plasma propagation,and investigated the influence of gas flow on the plasma development.It is shown that the plasma bullets,which have velocity in the order of 103~104m/s,exist only outside the cathode.APPJ(atmospheric pressure plasma jet)is created by the electron beam from the cathode,and then sustained by a strong radial electric field near and outside the cathode.The gas flow influences the APPJ length in air but not the APPJ discharge,while the discharge is affected significantly by the applied voltage.
基金supported in part by China Foundation for the Author of National Excellent Doctoral Dissertation(No.200338)New Century Excellent Talents in University(No.NCET-04-0943)
文摘A coaxial dielectric barrier discharge plasma jet was designed, which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply, and an atmospheric pressure glow-like discharge was achieved. Two kinds of typical bacteria, i.e., the Staphylococcus aureus (S. aureus) and Escherichia coil (E. coil), were employed to study the bacterial inactivation mechanism by means of the non-thermal plasma. The killing log value (KLV) of S. aureus reached up to 5.38 with a treatment time of 90 s and that of E. coil up to 5.36 with 60 s, respectively. According to the argon emission spectra of the plasma jet and the scanning electron microscope (SEM) images of the two bacteria before and after the plasma treatment, it is concluded that the reactive species in the argon plasma played a major role in the bacterial inactivation, while the heat, electric field and UV photons had little effect.
文摘An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experi- mental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination pro-cess, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chroma- tism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet.
基金supported by National Natural Science Foundation of China(Nos.10775027,50807011)
文摘This letter reports on the generation and characteristics of a large-scale dielectric barrier discharge plasma jet at atmospheric pressure. With appropriate parameters, diffuse plasma with a 50×5 mm2 cross-sectional area is obtained. The characteristics of the discharges are diag- nosed by using electrical and optical methods. In addition to being generated in helium, plasma is also generated in a mixed gas of helium and oxygen. The oxygen atomic radiant intensity (3p5P→ 3s5S, 3p3P→3s3S transition) is not proportional to the proportion of oxygen in the gas mixture, as shown by the experimental results.
基金Project supported by China National Fund for Distinguished Young Scientists(51125029)
文摘To compare the formation mechanisms of He and Ar atmospheric pressure plasma jets(APPJs),an intensified charge-coupled device(ICCD)are utilized to observe the dynamic process of APPJ.The experimental results show that,He APPJ is first ignited,which is independent of the dielectric barrier discharge(DBD)between the two wrapped electrodes when the high voltage placed at the downstream.The intensity and APPJ length under positive discharge pulses are bigger than that under negative discharge pulses due to the space charge effect.The He APPJ is formed by the DBD development when the high-voltage electrode placed at the upstream side of tube.However,the plasma plume in Ar APPJ is formed by the propagation of DBD whatever the high-voltage electrode is arranged on upstream or downstream side of ground electrode.The difference in formation mechanism between He and Ar APPJs is mainly caused by the gas properties.Moreover,during the discharges,Ar tends to lead to thermal instability and electron Maxwellian instability.
基金supported by National Natural Science Foundation of China (No.11105093)
文摘In this study, the density of metastable He2* in an atmospheric-pressure plasma jet operating in helium with 0.001% nitrogen has been measured using an auxiliary measuring electrode technique.In the glow discharge mode, waveforms from two grounding electrodes, including one main discharge electrode and one auxiliary electrode, are captured.The isolated current peak formed by Penning ionization in waveforms from the auxiliary measuring electrode is identified to calculate the density of metastable He2*.In our discharge environment, the helium metastable densities along the jet axis direction are between 2.26×1013 and 1.74×1013 cm-3,which is in good agreement with the results measured by other techniques.This measurement technique can be conveniently applied to the diagnosis of metastable He2* in an atmospheric-pressure plasma jet array.
基金partially supported by the ZE Research Program,IAE(ZE31B-23)the joint usage/research program,c LPS(19022)。
文摘In this study,the effects of the fluid cooling and electric field line deformation were investigated in a dielectric barrier discharge(DBD)plasma source.The DBD plasma jet is improved by covering the ground electrode and a power electrode with insulating oil.We obtained positive results as insulating oil prevents arc formation,while it improved the supplied power and plasma jet length,and increased radical production.Radical production of this nonthermal plasma jet is studied with polyvinyl alcohol-potassium iodide liquid.