With advantages of high specific strength, low elastic module, good damping property et al., the magnesium alloys exhibit great potential applications in aerospace. But poor wear behavior results in limited use of mag...With advantages of high specific strength, low elastic module, good damping property et al., the magnesium alloys exhibit great potential applications in aerospace. But poor wear behavior results in limited use of magnesium alloy to static components. In this study, a 2 μm thick coating with 12 sub-layers of CrN and TiN is deposited alternately on the surface of magnesium alloy AZ91 by a novel method of arc-glow plasma depositing to improve its wear resistance. The composition and microstructure of the coating layer are analyzed by means of SEM, XRD and GDS. The friction coefficient is measured by ball on disc rubbing test, and the wear rates are also calculated. The results indicate that the friction coefficient is increased, but the wear rate is dropped sharply as compared with bare metal. The surface hardness is about HK0.01 1400.展开更多
Plasma electrolytic oxidation(PEO) coatings were prepared on AZ31 magnesium alloy using alkaline phosphate as base electrolyte system, and with the addition of sodium silicate(Na2SiO3), sodium aluminate(NaAlO2) ...Plasma electrolytic oxidation(PEO) coatings were prepared on AZ31 magnesium alloy using alkaline phosphate as base electrolyte system, and with the addition of sodium silicate(Na2SiO3), sodium aluminate(NaAlO2) and potassium fluorozirconate(K2ZrF6) as additives. The microstructure, phase composition and element composition as well as surface profile of the PEO coatings were analyzed by means of scanning electron microscopy(SEM), X-ray diffraction(XRD), energy dispersive X-ray spectroscopy(EDS), and threedimensional(3 D) optical profilometry. The corrosion and wear properties were evaluated by electrochemical potentiodynamic polarization in 3.5 wt% Na Cl solution and ball-on-disc wear tests, respectively. The results showed that the anions of the additives effectively participated in the coating formation influencing its microstructural features, chemical composition, corrosion resistance and tribological behaviour. It was observed that the sample treated by PEO in the electrolyte solution containing K2ZrF6 as an additive showed better corrosion and abrasive resistance.展开更多
Arc-added glow discharge plasma penetrating technique is a new surface coating method. With the help of vacuum arc discharge, a cold cathode arc source continually emits ion beams of coating elements with high currenc...Arc-added glow discharge plasma penetrating technique is a new surface coating method. With the help of vacuum arc discharge, a cold cathode arc source continually emits ion beams of coating elements with high currency density and high ionizing ratio. As the ion bombard and diffusion working on, the surface of the parts form deposited layer, penetrated layer and hybrid layer. Under lab condition, a commercial magnesium alloy Az91 had been coated with Ti film layer with the aim of improving its’ anti-corrosion performance. This paper mainly summarized our studies on the testing and analyzing of the coating layer. The composition and microstructure of the coating layer had been analyzed by means of X-ray diffraction (XRD) and glow discharge spectrum (GDS), and the surface appearance had been surveyed by scanning electronic microscope (SEM). The adhesion strength between film and matrix had been evaluated by experiments of sticking-tearing. The results indicated that the coated layer on magnesium alloy were homogeneous, dense and robustly adhered.展开更多
The growth characteristics of oxide ceramic films formed on AZ31 magnesium alloy with plasma electrolytic oxidation (PEO) technique in alkaline silicate solution were investigated. The composition, structure and morph...The growth characteristics of oxide ceramic films formed on AZ31 magnesium alloy with plasma electrolytic oxidation (PEO) technique in alkaline silicate solution were investigated. The composition, structure and morphology of the coatings were detected by energy dispersive X-ray spectroscope and scanning electron microscope. The amount of dissolved magnesium in the electrolytes during PEO process was measured by atomic absorption spectrometry. The results indicated that the growth process of PEO films had three stages when applied with constant voltage mode. In the first stage, the growth rate of PEO films was low, and concentrations of elements O, Mg and Si varied slightly. After sparking occurred (the second stage), the PEO films showed higher growth rate due to the high transfer rate of ions and electrons, and the existence of plasma reactions. When the growth rate tended to maintain stable with time, the third stage happened. PEO films exhibited different uniform and pitting-corrosion characteristics in different reaction stages. The films formed at 300 V for 30 min performed best corrosion resistance and the phase of ceramic films was mainly composed of MgSiO3 and forsterite Mg2SiO4.展开更多
Artificial neural networks became an attractive alternative for modeling and simulation of com- plex biological systems. In the present work, a blood plasma model based on artificial neural networks was proposed in or...Artificial neural networks became an attractive alternative for modeling and simulation of com- plex biological systems. In the present work, a blood plasma model based on artificial neural networks was proposed in order to evaluate the relationship between the magnesium ion pre-sent in the blood plasma and systolic blood pressure and glucose. Experimental and simu- lated data were used to construct and validate the model. It performed the analysis consider-ing the systolic blood pressure and glucose as a function of magnesium ion concentration at a fixed temperature (37oC). Predictions of these relationships through the proposed model produced errors, on average, below 1% com-pared against experimental data not presented in the training step. The proposed methodology revealed quantitative results and correctly pre-dicted behaviors and trends towards the asso-ciation between magnesium concentrations and systolic blood pressure, and glucose in far agreement with experimental results from lit-erature. These results indicated that artificial neural networks can successfully learn the complexity of the relationships among bio-logical parameters of distinct groups and can be used as a complementary tool to assist studies in which the role of magnesium in systolic blood pressure and glucose are con-sidered.展开更多
Oxygen plasma immersion ion implantation (PIII) has been conducted on AZ31B magnesium alloy using different bias voltages. The modified layer is mainly composed of MgO and some MgAl2O4. Results form Rutherford backs...Oxygen plasma immersion ion implantation (PIII) has been conducted on AZ31B magnesium alloy using different bias voltages. The modified layer is mainly composed of MgO and some MgAl2O4. Results form Rutherford backscattering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS) indicate that the bias voltage has a significant impact on the structure of the films. The oxygen implant fluences and the thickness of the implanted layer increase with higher bias voltages. A high bias voltage such as 60 kV leads to an unexpected increments in the oxygen-rich layer's thickness compared to those of the samples implanted at 20 kV and 40 kV. The hardness is hardly enhanced by oxygen PIII. The corrosion resistance of magnesium alloy may be improved by a proper implantation voltage.展开更多
The effect of potassium pyrophosphate in the electrolyte on plasma electrolytic oxidation(PEO) process for AZ91 Mg alloy was investigated.The morphologies and chemical compositions of the coating layer on the AZ91 Mg ...The effect of potassium pyrophosphate in the electrolyte on plasma electrolytic oxidation(PEO) process for AZ91 Mg alloy was investigated.The morphologies and chemical compositions of the coating layer on the AZ91 Mg alloy were evaluated and corrosion resistance was also estimated by potentiodynamic polarization analysis.The coating layer on AZ91 Mg alloy coated from the Bath 2 containing 0.03 mol/L of potassium pyrophosphate for 360 s exhibited considerably dense structure and contained 11%-18%(mass fraction) of phosphorous.The higher content of phosphorous of coating layer coated from Bath 2 could be detected at the bottom of oxide layer,which strongly implied that the phosphorous ion might be concentrated at the barrier layer.Corrosion potential of coating layer of AZ91 Mg alloy increased and corrosion current density decreased with increasing the concentration of potassium pyrophosphate.The polarization resistance(Rp) of coating layer of AZ91 Mg alloy coated from Bath 2 was 4.65×107 Ω/cm2,which was higher than that(Rp=3.56×104 Ω/cm2) of the sample coated from electrolyte without potassium pyrophosphate.The coating layer coated from Bath 2 containing 0.03 mol/L potassium pyrophosphate exhibited the best corrosion resistance.展开更多
The aim of this work is to investigate microstructure,corrosion resistance characteristics and nanohardness of the oxide layer on AZ91 Mg alloy by applying different voltage with KMnO4 contained solution.There are lot...The aim of this work is to investigate microstructure,corrosion resistance characteristics and nanohardness of the oxide layer on AZ91 Mg alloy by applying different voltage with KMnO4 contained solution.There are lots of closed pores that are filled with another oxide compound compared with the typical surface morphology with pore coated until 350 V of coating voltage.The thickness of oxide layer increases with increasing coating voltage.The oxide layer formed on AZ91 Mg alloy in electrolyte with potassium permanganate consists of MgO and Mn2O3.Corrosion potential of the oxide layer on AZ91 Mg alloy obtained at different plasma electrolytic oxidation(PEO) reaction stages increases with increasing coating voltage.The corrosion resistance of AZ91 Mg alloy depends on the existence of the manganese oxide in the oxide layer.The inner barrier layer composed of the MgO and Mn2O3 may serve as diffusion barrier to enhance the corrosion resistance and may partially explain the excellent anti-corrosion performance in corrosion test.Nanohardness values increase with increasing coating voltage.The increase in the nanohardness may be due to the effect of manganese oxide in the oxide layer on AZ91 Mg alloy coated from electrolyte containing KMnO4.展开更多
The mechanical properties and friction behaviors of CNT/AlSi10Mg composites produced by spark plasma sintering (SPS) were investigated. The results showed that the densities of the sintered composites gradually increa...The mechanical properties and friction behaviors of CNT/AlSi10Mg composites produced by spark plasma sintering (SPS) were investigated. The results showed that the densities of the sintered composites gradually increased with increasing sintering temperature and that the highest microhardness and compressive strength were achieved in the specimen sintered at 450A degrees C. CNTs dispersed uniformly in the Al-Si10Mg matrix when the addition of CNTs was less than 1.5wt%. However, when the addition of CNTs exceeded 1.5wt%, the aggregation of CNTs was clearly observed. Moreover, the mechanical properties (including the densities, compressive strength, and microhardness) of the composites changed with CNT content and reached a maximum value when the CNT content was 1.5wt%. Meanwhile, the minimum average friction coefficient and wear rate of the CNT/AlSi10Mg composites were obtained with 1.0wt% CNTs.展开更多
Applying a novel method of arc-glow plasma depositing, a 2μm-thick coating with 12 sub-layers of TiN and CrN was deposited alternately on the surface of magnesium alloy AZ91D to improve its wear resistance. The wear ...Applying a novel method of arc-glow plasma depositing, a 2μm-thick coating with 12 sub-layers of TiN and CrN was deposited alternately on the surface of magnesium alloy AZ91D to improve its wear resistance. The wear behavior was investigated by test of ball on disc sliding. The composition and microstructure of the coating were also analyzed by means of X-ray diffraction (XRD) and glow discharge spectrum (GDS), and the morphology of TiN-CrN film was surveyed through scanning electronic microscopy (SEM) and atom force microscopy (AFM).The adhesion strength between film and matrix was evaluated by ways of stick-peeling test. The surface micro-hardness of the coating is above HK0.011 433, and the specific wear ratio of specimens coated with TiN-CrN films tested decreases greatly compared to that of the bare metal.展开更多
基金Science foundation of Shanxi province, China (20041065)
文摘With advantages of high specific strength, low elastic module, good damping property et al., the magnesium alloys exhibit great potential applications in aerospace. But poor wear behavior results in limited use of magnesium alloy to static components. In this study, a 2 μm thick coating with 12 sub-layers of CrN and TiN is deposited alternately on the surface of magnesium alloy AZ91 by a novel method of arc-glow plasma depositing to improve its wear resistance. The composition and microstructure of the coating layer are analyzed by means of SEM, XRD and GDS. The friction coefficient is measured by ball on disc rubbing test, and the wear rates are also calculated. The results indicate that the friction coefficient is increased, but the wear rate is dropped sharply as compared with bare metal. The surface hardness is about HK0.01 1400.
基金Funded by National Natural Science Foundation of China(No.51371039)Zhejiang Provincial Natural Science Foundation of China(No.LGG18E020004)+1 种基金Open Foundation of Zhejiang Provincial Top Key Discipline of Mechanical EngineeringScience and Technology Project of Zhejiang Province(No.2015C37037)
文摘Plasma electrolytic oxidation(PEO) coatings were prepared on AZ31 magnesium alloy using alkaline phosphate as base electrolyte system, and with the addition of sodium silicate(Na2SiO3), sodium aluminate(NaAlO2) and potassium fluorozirconate(K2ZrF6) as additives. The microstructure, phase composition and element composition as well as surface profile of the PEO coatings were analyzed by means of scanning electron microscopy(SEM), X-ray diffraction(XRD), energy dispersive X-ray spectroscopy(EDS), and threedimensional(3 D) optical profilometry. The corrosion and wear properties were evaluated by electrochemical potentiodynamic polarization in 3.5 wt% Na Cl solution and ball-on-disc wear tests, respectively. The results showed that the anions of the additives effectively participated in the coating formation influencing its microstructural features, chemical composition, corrosion resistance and tribological behaviour. It was observed that the sample treated by PEO in the electrolyte solution containing K2ZrF6 as an additive showed better corrosion and abrasive resistance.
文摘Arc-added glow discharge plasma penetrating technique is a new surface coating method. With the help of vacuum arc discharge, a cold cathode arc source continually emits ion beams of coating elements with high currency density and high ionizing ratio. As the ion bombard and diffusion working on, the surface of the parts form deposited layer, penetrated layer and hybrid layer. Under lab condition, a commercial magnesium alloy Az91 had been coated with Ti film layer with the aim of improving its’ anti-corrosion performance. This paper mainly summarized our studies on the testing and analyzing of the coating layer. The composition and microstructure of the coating layer had been analyzed by means of X-ray diffraction (XRD) and glow discharge spectrum (GDS), and the surface appearance had been surveyed by scanning electronic microscope (SEM). The adhesion strength between film and matrix had been evaluated by experiments of sticking-tearing. The results indicated that the coated layer on magnesium alloy were homogeneous, dense and robustly adhered.
基金Supported by the Guangdong Province Science and Technology Plan Project (No.2005B50101001)
文摘The growth characteristics of oxide ceramic films formed on AZ31 magnesium alloy with plasma electrolytic oxidation (PEO) technique in alkaline silicate solution were investigated. The composition, structure and morphology of the coatings were detected by energy dispersive X-ray spectroscope and scanning electron microscope. The amount of dissolved magnesium in the electrolytes during PEO process was measured by atomic absorption spectrometry. The results indicated that the growth process of PEO films had three stages when applied with constant voltage mode. In the first stage, the growth rate of PEO films was low, and concentrations of elements O, Mg and Si varied slightly. After sparking occurred (the second stage), the PEO films showed higher growth rate due to the high transfer rate of ions and electrons, and the existence of plasma reactions. When the growth rate tended to maintain stable with time, the third stage happened. PEO films exhibited different uniform and pitting-corrosion characteristics in different reaction stages. The films formed at 300 V for 30 min performed best corrosion resistance and the phase of ceramic films was mainly composed of MgSiO3 and forsterite Mg2SiO4.
文摘Artificial neural networks became an attractive alternative for modeling and simulation of com- plex biological systems. In the present work, a blood plasma model based on artificial neural networks was proposed in order to evaluate the relationship between the magnesium ion pre-sent in the blood plasma and systolic blood pressure and glucose. Experimental and simu- lated data were used to construct and validate the model. It performed the analysis consider-ing the systolic blood pressure and glucose as a function of magnesium ion concentration at a fixed temperature (37oC). Predictions of these relationships through the proposed model produced errors, on average, below 1% com-pared against experimental data not presented in the training step. The proposed methodology revealed quantitative results and correctly pre-dicted behaviors and trends towards the asso-ciation between magnesium concentrations and systolic blood pressure, and glucose in far agreement with experimental results from lit-erature. These results indicated that artificial neural networks can successfully learn the complexity of the relationships among bio-logical parameters of distinct groups and can be used as a complementary tool to assist studies in which the role of magnesium in systolic blood pressure and glucose are con-sidered.
基金supported by National Natural Science Foundation of China(Nos.10575025,50373007)the Program for New Century Excellent Talents in University in Chinathe City University of Hong Kong Strategic Research(No.7002138)
文摘Oxygen plasma immersion ion implantation (PIII) has been conducted on AZ31B magnesium alloy using different bias voltages. The modified layer is mainly composed of MgO and some MgAl2O4. Results form Rutherford backscattering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS) indicate that the bias voltage has a significant impact on the structure of the films. The oxygen implant fluences and the thickness of the implanted layer increase with higher bias voltages. A high bias voltage such as 60 kV leads to an unexpected increments in the oxygen-rich layer's thickness compared to those of the samples implanted at 20 kV and 40 kV. The hardness is hardly enhanced by oxygen PIII. The corrosion resistance of magnesium alloy may be improved by a proper implantation voltage.
基金supported by a grant from the Center for Advanced Materials Processing (CAMP) of the 21st Century Frontier R&D Program funded by the Ministry of Knowledge Economy (MKE),Koreasupported by the Korea Science and Engineering Foundation (No.2009-0079807)
文摘The effect of potassium pyrophosphate in the electrolyte on plasma electrolytic oxidation(PEO) process for AZ91 Mg alloy was investigated.The morphologies and chemical compositions of the coating layer on the AZ91 Mg alloy were evaluated and corrosion resistance was also estimated by potentiodynamic polarization analysis.The coating layer on AZ91 Mg alloy coated from the Bath 2 containing 0.03 mol/L of potassium pyrophosphate for 360 s exhibited considerably dense structure and contained 11%-18%(mass fraction) of phosphorous.The higher content of phosphorous of coating layer coated from Bath 2 could be detected at the bottom of oxide layer,which strongly implied that the phosphorous ion might be concentrated at the barrier layer.Corrosion potential of coating layer of AZ91 Mg alloy increased and corrosion current density decreased with increasing the concentration of potassium pyrophosphate.The polarization resistance(Rp) of coating layer of AZ91 Mg alloy coated from Bath 2 was 4.65×107 Ω/cm2,which was higher than that(Rp=3.56×104 Ω/cm2) of the sample coated from electrolyte without potassium pyrophosphate.The coating layer coated from Bath 2 containing 0.03 mol/L potassium pyrophosphate exhibited the best corrosion resistance.
基金supported by a grant from the Center of Advanced Materials Processing(CAMP) of the 21st Centry Froniter R&D Program Funded by the Ministry of Knowledge Economy(MKE),Koreasupported by the Korea Science and Engineering Foundation (No.2009-0079807)
文摘The aim of this work is to investigate microstructure,corrosion resistance characteristics and nanohardness of the oxide layer on AZ91 Mg alloy by applying different voltage with KMnO4 contained solution.There are lots of closed pores that are filled with another oxide compound compared with the typical surface morphology with pore coated until 350 V of coating voltage.The thickness of oxide layer increases with increasing coating voltage.The oxide layer formed on AZ91 Mg alloy in electrolyte with potassium permanganate consists of MgO and Mn2O3.Corrosion potential of the oxide layer on AZ91 Mg alloy obtained at different plasma electrolytic oxidation(PEO) reaction stages increases with increasing coating voltage.The corrosion resistance of AZ91 Mg alloy depends on the existence of the manganese oxide in the oxide layer.The inner barrier layer composed of the MgO and Mn2O3 may serve as diffusion barrier to enhance the corrosion resistance and may partially explain the excellent anti-corrosion performance in corrosion test.Nanohardness values increase with increasing coating voltage.The increase in the nanohardness may be due to the effect of manganese oxide in the oxide layer on AZ91 Mg alloy coated from electrolyte containing KMnO4.
基金supported by the National Natural Science Foundation of China(NSFC,China) under Grant Number of 51405467Chongqing Research of Application Foundation and Advanced Technology(project No.cstc2016jcyj A0016)the Key Program of the Chinese Academy of Sciences(No.KGZD-EW-T0)
文摘The mechanical properties and friction behaviors of CNT/AlSi10Mg composites produced by spark plasma sintering (SPS) were investigated. The results showed that the densities of the sintered composites gradually increased with increasing sintering temperature and that the highest microhardness and compressive strength were achieved in the specimen sintered at 450A degrees C. CNTs dispersed uniformly in the Al-Si10Mg matrix when the addition of CNTs was less than 1.5wt%. However, when the addition of CNTs exceeded 1.5wt%, the aggregation of CNTs was clearly observed. Moreover, the mechanical properties (including the densities, compressive strength, and microhardness) of the composites changed with CNT content and reached a maximum value when the CNT content was 1.5wt%. Meanwhile, the minimum average friction coefficient and wear rate of the CNT/AlSi10Mg composites were obtained with 1.0wt% CNTs.
基金Project(20041065) supported by the Natural Science Foundation of Shanxi Province, China
文摘Applying a novel method of arc-glow plasma depositing, a 2μm-thick coating with 12 sub-layers of TiN and CrN was deposited alternately on the surface of magnesium alloy AZ91D to improve its wear resistance. The wear behavior was investigated by test of ball on disc sliding. The composition and microstructure of the coating were also analyzed by means of X-ray diffraction (XRD) and glow discharge spectrum (GDS), and the morphology of TiN-CrN film was surveyed through scanning electronic microscopy (SEM) and atom force microscopy (AFM).The adhesion strength between film and matrix was evaluated by ways of stick-peeling test. The surface micro-hardness of the coating is above HK0.011 433, and the specific wear ratio of specimens coated with TiN-CrN films tested decreases greatly compared to that of the bare metal.