Medical forged CoCrMo alloy was treated by plasma nitriding process.The microstructures were characterized by 3Dprofiler,SEM and XRD.The tribological properties were investigated under lubrication of 25% bovine serum ...Medical forged CoCrMo alloy was treated by plasma nitriding process.The microstructures were characterized by 3Dprofiler,SEM and XRD.The tribological properties were investigated under lubrication of 25% bovine serum solution.Resultsshow that plasma nitriding is a promising process to produce thick,hard,and more wear resistant layers on the surface of CoCrMoalloy.All nitrided samples showed an important increase in the surface hardness due to the formation of harder CrN andCrN phases with compact nano-crystalline structures.The typical hardness values of HVincreased almost two times thanuntreated one.Under bovine serum lubrication,at low nitriding temperature the Coefficient of Friction (COF) of nitrided samplewas lower than that of untreated sample,but at high nitriding temperature the COF was almost the same as the untreated one.Compared with the untreated sample,the nitrided samples showed lower wear rates and higher wear resistance under differentnitriding temperatures.The adhesive wear is the main mechanism for untreated CoCrMo alloy and the wear mechanisms ofnitrided ones are the fatigue wear and slight adhesive wear.It is concluded that the improvement of wear resistance is ascribed tothe hard nitride formation of CrN and CrN phases at the nitrided surfaces.展开更多
Medium-carbon alloy steel was plasma nitrided with rare earths La, Ce and Nd into the nitriding chamber respectively. The nitriding layer microstructures with and without rare earths were compared using optical micros...Medium-carbon alloy steel was plasma nitrided with rare earths La, Ce and Nd into the nitriding chamber respectively. The nitriding layer microstructures with and without rare earths were compared using optical microscope,normal SEM and high resolution SEM, as well as TEM. It was found that the extent of the influence on plasma nitriding varies with different contents of rare earth. The effect of plasma nitriding is benefit from adding of Ce or Nd. The formation of hard and brittle phase Fe_(2-3)N can be prevented and the butterfly-like structure can be improved by adding Ce or Nd. However, pure La may prevent the diffusion of nitrogen and the formation of iron nitride, and reduce the depth of diffusion layer.展开更多
This study aims to draw an exact boundary for microstructural and mechanical behaviors in terms of pulsed plasma nitriding conditions.The pulsed plasma nitriding treatment was applied to AISI 304 austenitic stainless ...This study aims to draw an exact boundary for microstructural and mechanical behaviors in terms of pulsed plasma nitriding conditions.The pulsed plasma nitriding treatment was applied to AISI 304 austenitic stainless steel at different temperatures and durations.Results reveal that nitriding depth increased as process temperature and duration increase.The nitriding depth remarkably increased at 475℃for 8 h and at 550℃for 4 h.An austenite structure was transformed into a metastable nitrogen-oversaturated body-centered tetragonal expanded austenite(S-phase)during low-temperature plasma nitriding.The S-phase was converted to CrN precipitation at 475℃for 8 h and at 550℃for 4 h.Surface hardness and fatigue limit increased through plasma nitriding regardless of process conditions.The best surface hardness and fatigue limit were obtained at 550℃for 4 h because of the occurrence of CrN precipitation.展开更多
A series of experiments were carried out to study the influence of low temperature plasma nitriding on the mechanical properties of AISI 420 martensitic stainless steel. Plasma nitriding experiments were carried out f...A series of experiments were carried out to study the influence of low temperature plasma nitriding on the mechanical properties of AISI 420 martensitic stainless steel. Plasma nitriding experiments were carried out for 15 h at 350℃ by means of DC- pulsed plasma in 25%N2+ 75%H2 atmosphere. The microstructure, phase composition, and residual stresses profiles of the nitrided layers were determined by optical microscopy and X-ray diffraction. The microhardness profiles of the nitridied surfaces were also studied. The fatigue life, sliding wear, and erosion wear loss of the untreated specimens and plasma nitriding specimens were determined on the basis of a rotating bending fatigue tester, a ball-on-disc wear tester, and a solid particle erosion tester. The results show that the 350℃ nitrided surface is dominated by c-Fe3N and ON, which is supersaturated nitrogen solid solution. They have high hardness and chemical stabilities. So the low temperature plasma nitriding not only increases the surface hardness values but also improves the wear and erosion resistance. In addition, the fatigue limit of AISI 420 steel can also be improved by plasma nitriding at 350℃ because plasma nitriding produces residual compressive stress inside the modified layer.展开更多
The nitrided layer on Ti6A14V substrate was prepared by the plasma nitriding technique. The sample was characterized by X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES), X-ray photoele...The nitrided layer on Ti6A14V substrate was prepared by the plasma nitriding technique. The sample was characterized by X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS), and rough-meter. X- ray diffraction analysis reveals that TiN, Ti2N and Ti phase exist in the nitrided layer subsurface. GDOES analysis shows the thickness of the nitrided layer is about 3 ~tm. XPS analysis shows that there is higher N, lower A1 and lower V in the nitrided layer surface than in the Ti6A14V surface. Rough-meter analysis results show the roughness of the nitrided layer is greater than that of Ti6A14V alloy base. The bacteria adherence property of the nitrided layer on Ti6A14V substrate on the Streptococcus mutans was investigated and compared with that of Ti6A14V alloy by fluorescence microscope. It shows that the nitrided layer inhibits the bacteria adherence.展开更多
Titanium(Ti)nitrides were in situ grown on Ti6Al4V alloy(TA)using a glow discharge plasma nitriding(GDPN).The morphology,chemical composition,phase and mechanical property of the obtained nitrided TA were analyzed usi...Titanium(Ti)nitrides were in situ grown on Ti6Al4V alloy(TA)using a glow discharge plasma nitriding(GDPN).The morphology,chemical composition,phase and mechanical property of the obtained nitrided TA were analyzed using a scanning electron microscope(SEM),energy dispersive spectroscope(EDS),X-ray diffraction(XRD),and nanoindentation tester,respectively.The tribological performances of un-nitrided and nitrided TAs were evaluated using a ball-on-plate wear tester,and the wear mechanism was also discussed in detail.The results show that the nitrided layer with the compound and diffusion layers is formed on the nitrided TA,which is composed of δ-TiN and a-Ti phases.The nanohardness and elastic modulus of nitrided TA are 6.05 and 143.13 GPa,respectively,higher than those of un-nitrided TA.The friction reduction and anti-wear performances of nitrided TA are better than those of un-nitrided TA,and the wear mechanism is primary abrasive wear,accompanying with adhesive wear,which is attributed to the formation of Ti nitrides with the high nanohardness and elastic modulus.展开更多
Glow discharge plasma nitriding of AISI 304 austenitic stainless steel has been carried out for different processing time under optimum discharge conditions established by spectroscopic analysis. The treated samples w...Glow discharge plasma nitriding of AISI 304 austenitic stainless steel has been carried out for different processing time under optimum discharge conditions established by spectroscopic analysis. The treated samples were analysed by X-ray diffraction (XRD) to explore the changes induced in the crystallographic structure. The XRD pattern confirmed the formation of an expanded austenite phase (TN) owing to incorporation of nitrogen as an interstitial solid solution in the iron lattice. A Vickers microhardness tester was used to evaluate the surface hardness as a function of indentation depth (μm). The results showed clear evidence of surface changes with substantial increase in surface hardness.展开更多
In this study, plasma nitriding was used to fabricate a hard protective layer on AISI P20 steel, at three process temperatures(450℃, 500℃, and 550℃) and over a range of time periods(2.5, 5, 7.5, and 10 h), and ...In this study, plasma nitriding was used to fabricate a hard protective layer on AISI P20 steel, at three process temperatures(450℃, 500℃, and 550℃) and over a range of time periods(2.5, 5, 7.5, and 10 h), and at a fixed gas N2:H2 ratio of 75vol%:25vol%. The morphology of samples was studied using optical microscopy and scanning electron microscopy, and the formed phase of each sample was determined by X-ray diffraction. The elemental depth profile was measured by energy dispersive X-ray spectroscopy, wavelength dispersive spectroscopy, and glow dispersive spectroscopy. The hardness profile of the samples was identified, and the microhardness profile from the surface to the sample center was recorded. The results show that ε-nitride is the dominant species after carrying out plasma nitriding in all strategies and that the plasma nitriding process improves the hardness up to more than three times. It is found that as the time and temperature of the process increase, the hardness and hardness depth of the diffusion zone considerably increase. Furthermore, artificial neural networks were used to predict the effects of operational parameters on the mechanical properties of plastic mold steel. The plasma temperature, running time of imposition, and target distance to the sample surface were all used as network inputs; Vickers hardness measurements were given as the output of the model. The model accurately reproduced the experimental outcomes under different operational conditions; therefore, it can be used in the effective simulation of the plasma nitriding process in AISI P20 steel.展开更多
A duplex treatment of plasma Zr-alloying and plasma nitriding was used to improve the tribological properties of Ti-6Al-4V. The microstructure of the Zr-N composite(alloyed) layer formed on Ti-6Al-4V and its hardnes...A duplex treatment of plasma Zr-alloying and plasma nitriding was used to improve the tribological properties of Ti-6Al-4V. The microstructure of the Zr-N composite(alloyed) layer formed on Ti-6Al-4V and its hardness, friction and wear properties were investigated by using OM, SEM, GDOES, EDS, microhardness tester as well as ball-on-disk tribometer. The results of microstructural analysis show that the alloyed layer is compact and uniform and is mainly composed of ZrN, TiN_(0.3) and AlN. A very tiny adhesive and slight oxidation wear is the primary wear mechanism for the modified Ti-6Al-4V. The tribological property is improved significantly after the duplex treatment. The good combination of antifriction and wear resistance for modified Ti-6Al-4V is mainly attributed to the higher surface hardness of metal nitrides formed on the surface and enhanced supporting of the Zr-diffusing layer.展开更多
With the Uddeholm self restricted method, the effect of compound layer of plasma nitriding on thermal fatigue behavior of 4Cr5MoSiV1 steel was studied by the way of adding Ar during plasma nitriding to remove the com...With the Uddeholm self restricted method, the effect of compound layer of plasma nitriding on thermal fatigue behavior of 4Cr5MoSiV1 steel was studied by the way of adding Ar during plasma nitriding to remove the compound layer. The results show that the compound layer of plasma nitriding can delay the nucleation of heat cracks and hold back the propagation of heat cracks from surface to substrate because of its high hardness and strength. On the other land, the heat checking expands faster with the compound layer on the surface than that without it. After 3000 cycles of thermal fatigue test, both heat cracks with the compound layer are wider than the another without compound layer and the number of heat cracks of the former is more from the view of cross section.展开更多
A series of experiments were carried out to investigate the influence of pure rare earth addition on the plasma nitriding response of low alloy steel. For this purpose, pure rare earth metals (La, Ce and Nd) were put ...A series of experiments were carried out to investigate the influence of pure rare earth addition on the plasma nitriding response of low alloy steel. For this purpose, pure rare earth metals (La, Ce and Nd) were put into the plasma nitriding furnace as sputter sources during nitriding of 722M24 steel. a variety of experimental and analytical techniques were employed to evaluate the structures and hardening response of the nitrided lavers which included metallography for structural examination, glow discharge spectrometry and secondary ion mass spectrometry for chemical composition profile analysis, X-ray diffraction for phase identification and microhardness testing for hardness profile measurements. The results show that the incorporation of rare earth metals in the glow discharge. during plasma nitriding not only influences the discharge characteristics but also results in the deposition of rare earth atoms and their compounds onto the specimen surface. These significantly affect the response of the investigated steel to plasma nitriding. The extent of the influence on plasma nitriding varies with different rare earth metals.展开更多
Plasma nitriding was used to improve the corrosion performance of anchor steel. The microstructure, phase constitution, microhardness and corrosion resistance of the nitrided layer were systematically studied. The res...Plasma nitriding was used to improve the corrosion performance of anchor steel. The microstructure, phase constitution, microhardness and corrosion resistance of the nitrided layer were systematically studied. The results show that the nitrided layer is continuous and dense, and consists of Fe4N and Fe3N in the outmost surface. The microhardness of the nitrided sample is improved because of the formation of nitrides in the outer side continuous layer and the inner parts. The nitrided layer on the surface of anchor steel can effectively improve the corrosion resistance of the anchor steel.展开更多
The sheath plasma characteristics changing with the negative bias applied to the substrate during electron cyclotron resonance plasma nitriding are studied. The sheath characteristics obtained by a Langmuir single pr...The sheath plasma characteristics changing with the negative bias applied to the substrate during electron cyclotron resonance plasma nitriding are studied. The sheath characteristics obtained by a Langmuir single probe and an ion energy analyzer show that when the negative bias applied to the substrate is increasing, the most probable energy of ions in the sheath and the full width of half maximum of ions energy distribution increase, the thickness of the sheath also increases, whereas the saturation current of ion decreases. It has been found from the optical emission spectrum that there are strong lines of N2 and N+2. Based on our experiment results the mechanism of plasma nitriding is discussed.展开更多
Two kinds nitride modified layers were obtained on Ti-13Nb-13 Zr surface to improve the wear property via magnetron sputtering and plasma nitriding techniques, respectively. The structures of the modified layer and th...Two kinds nitride modified layers were obtained on Ti-13Nb-13 Zr surface to improve the wear property via magnetron sputtering and plasma nitriding techniques, respectively. The structures of the modified layer and the worn surface after sliding test were characterized using X-ray diffraction(XRD) and scanning electron microscopy(SEM). The friction and wear behavior of the modified layer against alumina ball was investigated in the absence of lubricant under different loads(1 N and 2 N). The X-ray diffraction analysis reveals that nitride layer is mainly composed of TiN and Ti2N, while coating film consists of Ti N phase. Friction and wear test indicates that both modified layers can improve the wear resistance compared to untreated Ti-13Nb-13 Zr. Ti N thin film produces very hard surface, but may be easy to cause coating fracture and delamination under high normal load. However, nitride layer exhibits better wear performance. This is attributed to hard compound layer maintained its integrity with the hardened nitrogen diffusion zone during friction and wear process.展开更多
MEMS (micro-electric-mechanical-system) required for miniature, thin mechanical parts as a structural member; e.g., the miniature pumping system consisted of ten to twelve thin metallic plates before joining. At pre...MEMS (micro-electric-mechanical-system) required for miniature, thin mechanical parts as a structural member; e.g., the miniature pumping system consisted of ten to twelve thin metallic plates before joining. At present, those thin shaped sheets were fabricated by the chemical etching. Their geometric inaccuracy as well as long leading time often became an engineering issue. Micro-piercing process was expected to make mass production of thin sheet products with complex and accurate geometry for much shorter leading time once the die for this micro-piercing was built in. In the present paper, a new plasma nitriding-assisted printing was proposed as an automatic production line to fabricate the micro-piercing punch. After preparation of CAD-data of the punch head, its two dimensional geometry was ink-jet printed directly on the AISI420 stainless steel die-substrate. The unprinted surface area was only plasma nitrided at 693 K for 14.4 ks to transform this two dimensional micro-pattern to the three dimensional hardness distribution in the AISI420 substrate. Through the mechanical removal of ink-jet printed area, the flat punch head with sharp edge comers was fabricated in much shorter duration time than the end-milling. SEM-EDX, surface profiling measurement as well as micro-hardness testing were employed to describe each step in the above plasma printing. The thin MEMS stainless steel part with a micro-pendulum as well as three S-letter shaped springs was taken for an example to describe this automatic production procedure of plasma printing from the CAD data mining to the micro-piercing punch finishing.展开更多
In this study, the applicability of plasma nitriding treatment in the production of non-magnetic and corrosion resistant layer on 316L stainless steel implant material was investigated. 316L stainless steel substrates...In this study, the applicability of plasma nitriding treatment in the production of non-magnetic and corrosion resistant layer on 316L stainless steel implant material was investigated. 316L stainless steel substrates were plasma nitrided at temperatures of 350 ℃, 375 ℃, 400 ℃, 425 ℃ and 450 ℃ for 2 h in a gas mixture of 50% N2-50% H2, respectively. It was determined that the treatment temperature is the most important factor on the properties of the corrosion resistant layer of 316L stainless steel. The results show that s-phase formed at the temperatures under 400 ℃, and at the temperatures above 400 ℃, instead of s-phase, CrN and y'-Fe4N phases were observed in the modified layer. The electrical resistivity and surface roughness of the modified layer increase with treatment temperature. Under 400 ℃ the corrosion resistance increased with the temperature, above 400 ℃ it decreased with the increase in treatment temperature. It was analyzed that the electrical resistivity and the soft (ideal) ferro- magnetic properties of 316L stainless steel increased with treatment temperature during nitriding treatment. Also, plasma ni- triding at low temperatures provided magnetic behavior close to the ideal untreated 316L stainless steel.展开更多
In this work, the effect of nitriding current density on hardness, crystalline phase composition, layer thickness and corrosion rate of AlSl 4340 steel has been studied. X-ray diffraction analysis shows that thin laye...In this work, the effect of nitriding current density on hardness, crystalline phase composition, layer thickness and corrosion rate of AlSl 4340 steel has been studied. X-ray diffraction analysis shows that thin layers formed during nitriding process are constituted of 7-Fe4N for samples processed between 1 and 2.5 mA/cm2. Thickness of nitrided layer increases proportionally to current density (0 μm for 0.5 mA/cm2 to 15 pm for 2.5 mA/cm2). Plasma nitriding increased the surface hardness from 300 HV50g for untreated sample, to around 800HV5og for nitrided samples at 1 mA/cm2. While the untreated samples exhibited a corrosion rate of 0.153 mm per year, the corrosion performance was improved up to 0.03 mm per year at current densities above 1 mA/cm2, which is about one fifth of the corrosion rate of the untreated sample.展开更多
Plasma nitriding is successfully employed in treating AlxCoCrFeNi high-entropy alloys(HEAs)with finelydivided Al content(i.e.,x values in molar ratio,x=0.1-0.8)to develop wear-resistant structural materials.Nitridatio...Plasma nitriding is successfully employed in treating AlxCoCrFeNi high-entropy alloys(HEAs)with finelydivided Al content(i.e.,x values in molar ratio,x=0.1-0.8)to develop wear-resistant structural materials.Nitridation greatly removes the Al from the matrix that completely deplete the Ni-Al enriched phase,forming nanoscaled nitrides(AIN and CrN)precipitations near the surface.Nitriding promotes the hardness of present alloys with values widely ranging from 276 HV to 722 HV.Interestingly,the higher content the Al,the smaller thickness the nitrides layer,but the higher hardness due to the increased amount of hard nitrides phases and volume fraction of BCC phase.Significantly,plasma nitriding considerably improves the wear re sistance of AlxCoCrFeNi HEAs by 4-18 times.展开更多
In this study, plasma nitriding was carried out on pure titanium film coated 2024 Al alloy to improve its surface mechanical property. Ti film with the thickness of 3.0 mm was firstly fabricated by means of magnetron ...In this study, plasma nitriding was carried out on pure titanium film coated 2024 Al alloy to improve its surface mechanical property. Ti film with the thickness of 3.0 mm was firstly fabricated by means of magnetron sputtering method. Then, the Ti coated specimen was subjected to plasma atmosphere comprising 40% N2e60% H2 at 430 C for 8 h. The microstructures of the nitrided specimens were characterized by X-ray diffraction and scanning electron microscopy. Microhardness tester and pin-on-disc tribometer were used to test the mechanical properties of the untreated and nitrided specimen. The results showed that the surface of the nitrided specimen was composed of three layers(i.e. the outside nitride Ti N0.3layer, the middle Al3 Ti layer and the inside Al18Ti2Mg3 layer). The surface hardness and wear resistance of 2024 Al alloy were increased simultaneously by duplex treatment. The untreated specimen exhibited severe adhesive wear while the nitrided one behaved in middle abrasive wear.展开更多
The combined quadratic orthogonal regression method of experiment design wasemployed to explore the effects of process parameters of plasma nitriding of tantalum such as totalpressure, temperature and original hydroge...The combined quadratic orthogonal regression method of experiment design wasemployed to explore the effects of process parameters of plasma nitriding of tantalum such as totalpressure, temperature and original hydrogen molar fraction on the hardness, roughness and structureof nitriding surfaces. The regression equations of hardness, roughness and structure were givenaccording to the results of regression and statistic analysis. And the diffusion activation energyof nitrogen in tantalum on plasma nitriding conditions was calculated according to the experimentaldata of hardness of plasma-nitriding of tantalum vs time and temperature. The diffusion activationenergy calculated belongs to (155.49 +- 10.51) kJ/mol (783-983 K).展开更多
基金the supports by Tribology Science Fund State Key Laboratory of Tribology (SKLT) at Tsinghua University(SKLTKF08A01)Fundamental Research Funds for the Central UniversitiesNational Natural Science Foundation of China (No.51005234)
文摘Medical forged CoCrMo alloy was treated by plasma nitriding process.The microstructures were characterized by 3Dprofiler,SEM and XRD.The tribological properties were investigated under lubrication of 25% bovine serum solution.Resultsshow that plasma nitriding is a promising process to produce thick,hard,and more wear resistant layers on the surface of CoCrMoalloy.All nitrided samples showed an important increase in the surface hardness due to the formation of harder CrN andCrN phases with compact nano-crystalline structures.The typical hardness values of HVincreased almost two times thanuntreated one.Under bovine serum lubrication,at low nitriding temperature the Coefficient of Friction (COF) of nitrided samplewas lower than that of untreated sample,but at high nitriding temperature the COF was almost the same as the untreated one.Compared with the untreated sample,the nitrided samples showed lower wear rates and higher wear resistance under differentnitriding temperatures.The adhesive wear is the main mechanism for untreated CoCrMo alloy and the wear mechanisms ofnitrided ones are the fatigue wear and slight adhesive wear.It is concluded that the improvement of wear resistance is ascribed tothe hard nitride formation of CrN and CrN phases at the nitrided surfaces.
文摘Medium-carbon alloy steel was plasma nitrided with rare earths La, Ce and Nd into the nitriding chamber respectively. The nitriding layer microstructures with and without rare earths were compared using optical microscope,normal SEM and high resolution SEM, as well as TEM. It was found that the extent of the influence on plasma nitriding varies with different contents of rare earth. The effect of plasma nitriding is benefit from adding of Ce or Nd. The formation of hard and brittle phase Fe_(2-3)N can be prevented and the butterfly-like structure can be improved by adding Ce or Nd. However, pure La may prevent the diffusion of nitrogen and the formation of iron nitride, and reduce the depth of diffusion layer.
基金the Scientific and Technological Research Council of Turkey(TUBITAK)for the support of this study(Grant No:215M134)。
文摘This study aims to draw an exact boundary for microstructural and mechanical behaviors in terms of pulsed plasma nitriding conditions.The pulsed plasma nitriding treatment was applied to AISI 304 austenitic stainless steel at different temperatures and durations.Results reveal that nitriding depth increased as process temperature and duration increase.The nitriding depth remarkably increased at 475℃for 8 h and at 550℃for 4 h.An austenite structure was transformed into a metastable nitrogen-oversaturated body-centered tetragonal expanded austenite(S-phase)during low-temperature plasma nitriding.The S-phase was converted to CrN precipitation at 475℃for 8 h and at 550℃for 4 h.Surface hardness and fatigue limit increased through plasma nitriding regardless of process conditions.The best surface hardness and fatigue limit were obtained at 550℃for 4 h because of the occurrence of CrN precipitation.
基金supported by National Natural Science Foundation of China(Nos.50171054 and 50671085)National High Technical Research and Development Programme of China(No.2007AA03Z521).
文摘A series of experiments were carried out to study the influence of low temperature plasma nitriding on the mechanical properties of AISI 420 martensitic stainless steel. Plasma nitriding experiments were carried out for 15 h at 350℃ by means of DC- pulsed plasma in 25%N2+ 75%H2 atmosphere. The microstructure, phase composition, and residual stresses profiles of the nitrided layers were determined by optical microscopy and X-ray diffraction. The microhardness profiles of the nitridied surfaces were also studied. The fatigue life, sliding wear, and erosion wear loss of the untreated specimens and plasma nitriding specimens were determined on the basis of a rotating bending fatigue tester, a ball-on-disc wear tester, and a solid particle erosion tester. The results show that the 350℃ nitrided surface is dominated by c-Fe3N and ON, which is supersaturated nitrogen solid solution. They have high hardness and chemical stabilities. So the low temperature plasma nitriding not only increases the surface hardness values but also improves the wear and erosion resistance. In addition, the fatigue limit of AISI 420 steel can also be improved by plasma nitriding at 350℃ because plasma nitriding produces residual compressive stress inside the modified layer.
基金Funded by the National Natural Science Foundation of China(No.51171125)the National High-Tech Research and Development Program of China(863 Program)(No.2007AAO3Z521)+3 种基金the Natural Science Foundation of of Shanxi Province(No.2012011021-4,2012021021-8)the Shanxi Province Foundation for Returned Overseas Scholars(No 2011-038)the Shanxi Province Programs for Science and Technology Development(20110321051)the Taiyuan University of Technology Graduate Innovation Fund
文摘The nitrided layer on Ti6A14V substrate was prepared by the plasma nitriding technique. The sample was characterized by X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS), and rough-meter. X- ray diffraction analysis reveals that TiN, Ti2N and Ti phase exist in the nitrided layer subsurface. GDOES analysis shows the thickness of the nitrided layer is about 3 ~tm. XPS analysis shows that there is higher N, lower A1 and lower V in the nitrided layer surface than in the Ti6A14V surface. Rough-meter analysis results show the roughness of the nitrided layer is greater than that of Ti6A14V alloy base. The bacteria adherence property of the nitrided layer on Ti6A14V substrate on the Streptococcus mutans was investigated and compared with that of Ti6A14V alloy by fluorescence microscope. It shows that the nitrided layer inhibits the bacteria adherence.
基金Funded by the Fundamental Research Funds for the Central Universities(Nos.2232018A3-08,2232018D3-04)
文摘Titanium(Ti)nitrides were in situ grown on Ti6Al4V alloy(TA)using a glow discharge plasma nitriding(GDPN).The morphology,chemical composition,phase and mechanical property of the obtained nitrided TA were analyzed using a scanning electron microscope(SEM),energy dispersive spectroscope(EDS),X-ray diffraction(XRD),and nanoindentation tester,respectively.The tribological performances of un-nitrided and nitrided TAs were evaluated using a ball-on-plate wear tester,and the wear mechanism was also discussed in detail.The results show that the nitrided layer with the compound and diffusion layers is formed on the nitrided TA,which is composed of δ-TiN and a-Ti phases.The nanohardness and elastic modulus of nitrided TA are 6.05 and 143.13 GPa,respectively,higher than those of un-nitrided TA.The friction reduction and anti-wear performances of nitrided TA are better than those of un-nitrided TA,and the wear mechanism is primary abrasive wear,accompanying with adhesive wear,which is attributed to the formation of Ti nitrides with the high nanohardness and elastic modulus.
基金supported partially by the Higher Education Commission Research Project for Plasma Physics of Pakistan
文摘Glow discharge plasma nitriding of AISI 304 austenitic stainless steel has been carried out for different processing time under optimum discharge conditions established by spectroscopic analysis. The treated samples were analysed by X-ray diffraction (XRD) to explore the changes induced in the crystallographic structure. The XRD pattern confirmed the formation of an expanded austenite phase (TN) owing to incorporation of nitrogen as an interstitial solid solution in the iron lattice. A Vickers microhardness tester was used to evaluate the surface hardness as a function of indentation depth (μm). The results showed clear evidence of surface changes with substantial increase in surface hardness.
文摘In this study, plasma nitriding was used to fabricate a hard protective layer on AISI P20 steel, at three process temperatures(450℃, 500℃, and 550℃) and over a range of time periods(2.5, 5, 7.5, and 10 h), and at a fixed gas N2:H2 ratio of 75vol%:25vol%. The morphology of samples was studied using optical microscopy and scanning electron microscopy, and the formed phase of each sample was determined by X-ray diffraction. The elemental depth profile was measured by energy dispersive X-ray spectroscopy, wavelength dispersive spectroscopy, and glow dispersive spectroscopy. The hardness profile of the samples was identified, and the microhardness profile from the surface to the sample center was recorded. The results show that ε-nitride is the dominant species after carrying out plasma nitriding in all strategies and that the plasma nitriding process improves the hardness up to more than three times. It is found that as the time and temperature of the process increase, the hardness and hardness depth of the diffusion zone considerably increase. Furthermore, artificial neural networks were used to predict the effects of operational parameters on the mechanical properties of plastic mold steel. The plasma temperature, running time of imposition, and target distance to the sample surface were all used as network inputs; Vickers hardness measurements were given as the output of the model. The model accurately reproduced the experimental outcomes under different operational conditions; therefore, it can be used in the effective simulation of the plasma nitriding process in AISI P20 steel.
基金Funded by the National Natural Science Foundation of China(Nos.51474154,51401141,51501125)the Provincial Natural Science Foundation of Shanxi(Nos.2014011015-7,2014021017-3)
文摘A duplex treatment of plasma Zr-alloying and plasma nitriding was used to improve the tribological properties of Ti-6Al-4V. The microstructure of the Zr-N composite(alloyed) layer formed on Ti-6Al-4V and its hardness, friction and wear properties were investigated by using OM, SEM, GDOES, EDS, microhardness tester as well as ball-on-disk tribometer. The results of microstructural analysis show that the alloyed layer is compact and uniform and is mainly composed of ZrN, TiN_(0.3) and AlN. A very tiny adhesive and slight oxidation wear is the primary wear mechanism for the modified Ti-6Al-4V. The tribological property is improved significantly after the duplex treatment. The good combination of antifriction and wear resistance for modified Ti-6Al-4V is mainly attributed to the higher surface hardness of metal nitrides formed on the surface and enhanced supporting of the Zr-diffusing layer.
文摘With the Uddeholm self restricted method, the effect of compound layer of plasma nitriding on thermal fatigue behavior of 4Cr5MoSiV1 steel was studied by the way of adding Ar during plasma nitriding to remove the compound layer. The results show that the compound layer of plasma nitriding can delay the nucleation of heat cracks and hold back the propagation of heat cracks from surface to substrate because of its high hardness and strength. On the other land, the heat checking expands faster with the compound layer on the surface than that without it. After 3000 cycles of thermal fatigue test, both heat cracks with the compound layer are wider than the another without compound layer and the number of heat cracks of the former is more from the view of cross section.
文摘A series of experiments were carried out to investigate the influence of pure rare earth addition on the plasma nitriding response of low alloy steel. For this purpose, pure rare earth metals (La, Ce and Nd) were put into the plasma nitriding furnace as sputter sources during nitriding of 722M24 steel. a variety of experimental and analytical techniques were employed to evaluate the structures and hardening response of the nitrided lavers which included metallography for structural examination, glow discharge spectrometry and secondary ion mass spectrometry for chemical composition profile analysis, X-ray diffraction for phase identification and microhardness testing for hardness profile measurements. The results show that the incorporation of rare earth metals in the glow discharge. during plasma nitriding not only influences the discharge characteristics but also results in the deposition of rare earth atoms and their compounds onto the specimen surface. These significantly affect the response of the investigated steel to plasma nitriding. The extent of the influence on plasma nitriding varies with different rare earth metals.
基金Funded by the National Natural Science Foundation of China(NSFC)(Nos.50971102,51274145)
文摘Plasma nitriding was used to improve the corrosion performance of anchor steel. The microstructure, phase constitution, microhardness and corrosion resistance of the nitrided layer were systematically studied. The results show that the nitrided layer is continuous and dense, and consists of Fe4N and Fe3N in the outmost surface. The microhardness of the nitrided sample is improved because of the formation of nitrides in the outer side continuous layer and the inner parts. The nitrided layer on the surface of anchor steel can effectively improve the corrosion resistance of the anchor steel.
基金This work was supported by the National Natural Science Foundation of Grant Nos. 19838030 and 19875030
文摘The sheath plasma characteristics changing with the negative bias applied to the substrate during electron cyclotron resonance plasma nitriding are studied. The sheath characteristics obtained by a Langmuir single probe and an ion energy analyzer show that when the negative bias applied to the substrate is increasing, the most probable energy of ions in the sheath and the full width of half maximum of ions energy distribution increase, the thickness of the sheath also increases, whereas the saturation current of ion decreases. It has been found from the optical emission spectrum that there are strong lines of N2 and N+2. Based on our experiment results the mechanism of plasma nitriding is discussed.
基金Funded by the National Natural Science Foundation of China(Nos.51671140 and 51474154)the Shanxi Province Programs for Graduate Education Reform(2015JG42)
文摘Two kinds nitride modified layers were obtained on Ti-13Nb-13 Zr surface to improve the wear property via magnetron sputtering and plasma nitriding techniques, respectively. The structures of the modified layer and the worn surface after sliding test were characterized using X-ray diffraction(XRD) and scanning electron microscopy(SEM). The friction and wear behavior of the modified layer against alumina ball was investigated in the absence of lubricant under different loads(1 N and 2 N). The X-ray diffraction analysis reveals that nitride layer is mainly composed of TiN and Ti2N, while coating film consists of Ti N phase. Friction and wear test indicates that both modified layers can improve the wear resistance compared to untreated Ti-13Nb-13 Zr. Ti N thin film produces very hard surface, but may be easy to cause coating fracture and delamination under high normal load. However, nitride layer exhibits better wear performance. This is attributed to hard compound layer maintained its integrity with the hardened nitrogen diffusion zone during friction and wear process.
文摘MEMS (micro-electric-mechanical-system) required for miniature, thin mechanical parts as a structural member; e.g., the miniature pumping system consisted of ten to twelve thin metallic plates before joining. At present, those thin shaped sheets were fabricated by the chemical etching. Their geometric inaccuracy as well as long leading time often became an engineering issue. Micro-piercing process was expected to make mass production of thin sheet products with complex and accurate geometry for much shorter leading time once the die for this micro-piercing was built in. In the present paper, a new plasma nitriding-assisted printing was proposed as an automatic production line to fabricate the micro-piercing punch. After preparation of CAD-data of the punch head, its two dimensional geometry was ink-jet printed directly on the AISI420 stainless steel die-substrate. The unprinted surface area was only plasma nitrided at 693 K for 14.4 ks to transform this two dimensional micro-pattern to the three dimensional hardness distribution in the AISI420 substrate. Through the mechanical removal of ink-jet printed area, the flat punch head with sharp edge comers was fabricated in much shorter duration time than the end-milling. SEM-EDX, surface profiling measurement as well as micro-hardness testing were employed to describe each step in the above plasma printing. The thin MEMS stainless steel part with a micro-pendulum as well as three S-letter shaped springs was taken for an example to describe this automatic production procedure of plasma printing from the CAD data mining to the micro-piercing punch finishing.
文摘In this study, the applicability of plasma nitriding treatment in the production of non-magnetic and corrosion resistant layer on 316L stainless steel implant material was investigated. 316L stainless steel substrates were plasma nitrided at temperatures of 350 ℃, 375 ℃, 400 ℃, 425 ℃ and 450 ℃ for 2 h in a gas mixture of 50% N2-50% H2, respectively. It was determined that the treatment temperature is the most important factor on the properties of the corrosion resistant layer of 316L stainless steel. The results show that s-phase formed at the temperatures under 400 ℃, and at the temperatures above 400 ℃, instead of s-phase, CrN and y'-Fe4N phases were observed in the modified layer. The electrical resistivity and surface roughness of the modified layer increase with treatment temperature. Under 400 ℃ the corrosion resistance increased with the temperature, above 400 ℃ it decreased with the increase in treatment temperature. It was analyzed that the electrical resistivity and the soft (ideal) ferro- magnetic properties of 316L stainless steel increased with treatment temperature during nitriding treatment. Also, plasma ni- triding at low temperatures provided magnetic behavior close to the ideal untreated 316L stainless steel.
文摘In this work, the effect of nitriding current density on hardness, crystalline phase composition, layer thickness and corrosion rate of AlSl 4340 steel has been studied. X-ray diffraction analysis shows that thin layers formed during nitriding process are constituted of 7-Fe4N for samples processed between 1 and 2.5 mA/cm2. Thickness of nitrided layer increases proportionally to current density (0 μm for 0.5 mA/cm2 to 15 pm for 2.5 mA/cm2). Plasma nitriding increased the surface hardness from 300 HV50g for untreated sample, to around 800HV5og for nitrided samples at 1 mA/cm2. While the untreated samples exhibited a corrosion rate of 0.153 mm per year, the corrosion performance was improved up to 0.03 mm per year at current densities above 1 mA/cm2, which is about one fifth of the corrosion rate of the untreated sample.
基金supported financially by the opening project from the National Key Laboratory for Remanufacturing(No.61420050204)Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi(2019)the financial support from the China Scholarship Council(CSC)。
文摘Plasma nitriding is successfully employed in treating AlxCoCrFeNi high-entropy alloys(HEAs)with finelydivided Al content(i.e.,x values in molar ratio,x=0.1-0.8)to develop wear-resistant structural materials.Nitridation greatly removes the Al from the matrix that completely deplete the Ni-Al enriched phase,forming nanoscaled nitrides(AIN and CrN)precipitations near the surface.Nitriding promotes the hardness of present alloys with values widely ranging from 276 HV to 722 HV.Interestingly,the higher content the Al,the smaller thickness the nitrides layer,but the higher hardness due to the increased amount of hard nitrides phases and volume fraction of BCC phase.Significantly,plasma nitriding considerably improves the wear re sistance of AlxCoCrFeNi HEAs by 4-18 times.
基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20112302130006) for the financial support of this work
文摘In this study, plasma nitriding was carried out on pure titanium film coated 2024 Al alloy to improve its surface mechanical property. Ti film with the thickness of 3.0 mm was firstly fabricated by means of magnetron sputtering method. Then, the Ti coated specimen was subjected to plasma atmosphere comprising 40% N2e60% H2 at 430 C for 8 h. The microstructures of the nitrided specimens were characterized by X-ray diffraction and scanning electron microscopy. Microhardness tester and pin-on-disc tribometer were used to test the mechanical properties of the untreated and nitrided specimen. The results showed that the surface of the nitrided specimen was composed of three layers(i.e. the outside nitride Ti N0.3layer, the middle Al3 Ti layer and the inside Al18Ti2Mg3 layer). The surface hardness and wear resistance of 2024 Al alloy were increased simultaneously by duplex treatment. The untreated specimen exhibited severe adhesive wear while the nitrided one behaved in middle abrasive wear.
文摘The combined quadratic orthogonal regression method of experiment design wasemployed to explore the effects of process parameters of plasma nitriding of tantalum such as totalpressure, temperature and original hydrogen molar fraction on the hardness, roughness and structureof nitriding surfaces. The regression equations of hardness, roughness and structure were givenaccording to the results of regression and statistic analysis. And the diffusion activation energyof nitrogen in tantalum on plasma nitriding conditions was calculated according to the experimentaldata of hardness of plasma-nitriding of tantalum vs time and temperature. The diffusion activationenergy calculated belongs to (155.49 +- 10.51) kJ/mol (783-983 K).