Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this stu...Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this study presents a novel method for acquiring plasma spectral information from various spatial directions.A parabolic-shaped plasma spectral collection device(PSCD)is employed to effectively collect more spectral information into the spectrometer,thereby enhancing the overall spectral intensity.The research objects in this study were soil samples containing different concentrations of heavy metals Pb,Cr,and Cd.The results indicate that the PSCD significantly enhances the spectral signal,with an enhancement rate of up to 45%.Moreover,the signal-to-noise ratio also increases by as much as 36%.Simultaneously,when compared to the absence of a device,it is found that there is no significant variation in plasma temperature when the PSCD is utilized.This observation eliminates the impact of the spatial effect caused by the PSCD on the spectral intensity.Consequently,a concentrationspectral intensity relationship curve is established under the PSCD.The results revealed that the linear fitting R^(2)for Pb,Cr,and Cd increased by 0.011,0.001,and 0.054,respectively.Additionally,the limit of detection(LOD)decreased by 0.361 ppm,0.901 ppm,and 0.602 ppm,respectively.These findings indicate that the spectral enhancement rate elevates with the increase in heavy metal concentration.Hence,the PSCD can effectively enhance the spectral intensity and reduce the detection limit of heavy metals in soil.展开更多
The plasma rotation velocity were measured in HL-1M with Doppler shifts of CⅢ、 C Ⅱ、 O Ⅱ and H. line by a SKD high resolution spectrometer. The effects .of density' hydrogen pellet injection and carbon impuri...The plasma rotation velocity were measured in HL-1M with Doppler shifts of CⅢ、 C Ⅱ、 O Ⅱ and H. line by a SKD high resolution spectrometer. The effects .of density' hydrogen pellet injection and carbon impurities injected by laser-blow-off on toroidal(V) and poloidal (Vθ)rotation velocity have been observed. The Vθ measured from H. line is only half of that from C Ⅱ impurity line.展开更多
Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ig...Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ignition mechanism of EFIs directly igniting pyrotechnics.An oscilloscope,a photon Doppler velocimetry,and a plasma spectrum measurement system were employed to obtain information of electric characteristics,impact pressure,and plasma temperature.The results of the electric characteristics and the impact pressure were inconsistent with ignition results.The only thing that the ignition success tests had in common was that their plasma all had a relatively long period of high-temperature duration(HTD).It eventually concludes that the ignition mechanism in this research is the microconvection heat transfer rather than the shock initiation,which differs from that of exploding foil initiators detonating explosives.Furthermore,the methods for evaluating the ignition success of semiconductor bridge initiators are not entirely applicable to the tests mentioned in this paper.The HTD is the critical parameter for judging the ignition success,and it is influenced by two factors:the late time discharge and the energy of the electric explosion.The longer time of the late time discharge and the more energy of the electric explosion,the easier it is to expand the HTD,which improves the probability of the ignition success.展开更多
Although the approach using non-thermal plasma(NTP) for deNOx has been studied for over 15 years,how to achieve higher removal effciency with lower cost is still a barrier for its industrial application.In order to ...Although the approach using non-thermal plasma(NTP) for deNOx has been studied for over 15 years,how to achieve higher removal effciency with lower cost is still a barrier for its industrial application.In order to investigate the impact of the argon additive on electron density,energy and nitric oxide reduction process in plasma,the spectrum of the dielectric barrier discharge at atmospheric pressure in a coaxial reactor was measured using the monochromater with high resolution.The comparative experiments for NO reduction were carried out simultaneously in N2/O2/NO plasma stream with and without argon,respectively.The nitrogen molecular spectrum which is attributed to the energy level transition(C^3πu→ B^3πg) was compared in the wavelength range 300-480 nm and the electron density and temperature were determined based on the relative intensities and Stark broadening width of spectral lines.The spectrum results indicated that the argon additive could enhance the intensity of emissive spectrum of plasma,thus the electron concentration as well as the energy was increased,and finally prompted the ionization rate to produce active N,O and O3.The results of NO reduction showed that NO conversion effciency increased in the range of 10%-30% with 5% addition of argon in stream comparing with the condition without argon additive.This study will play a positive role in the industrial application of dielectric barrier discharge deNOx reactor.展开更多
Continuous emission spectrum measurement is applied for the inconvenient diagnos- tics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presente...Continuous emission spectrum measurement is applied for the inconvenient diagnos- tics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presented to analyze the spectrum in low temperature plasma. The validity of this model is discussed in a wide range of discharge parameters, including electron tem- perature and ionization degree. Through the simplified model, the continuous emission spectrum in a collisional argon internal inductively coupled plasma is experimentally measured to determine the electron temperature distribution for different gas pressures and radio-frequency powers. The inverse Abel transform is also applied for a better spatially resoluted results. Meanwhile, the result of the continuous emission spectrum measurement is compared to that of the electrostatic double probes, which indicates the effectiveness of this method.展开更多
Optimal condition for <sup>13</sup>N radioisotope production through <sup>12</sup>C (d,n) 13N within plasma focus device is investigated. As the deuteron spectrum follows the empirical power la...Optimal condition for <sup>13</sup>N radioisotope production through <sup>12</sup>C (d,n) 13N within plasma focus device is investigated. As the deuteron spectrum follows the empirical power law of the form E<sup>-m</sup>, it is shown that the activity decreases by increasing the value of m. Unlike the fact that the repetition rate increases the activity, it is possible to achieve higher activities by increasing the bombardment time at a fixed repetition rate.展开更多
同轴枪放电可以产生高速度、高密度及高能量密度的等离子体射流,在等离子体空间推进、天体物理和高温核聚变等研究领域具有广泛的应用.基于同轴枪的实际应用,等离子体速度、密度、纯净度是评估等离子体特性的重要参量.本文通过对等离子...同轴枪放电可以产生高速度、高密度及高能量密度的等离子体射流,在等离子体空间推进、天体物理和高温核聚变等研究领域具有广泛的应用.基于同轴枪的实际应用,等离子体速度、密度、纯净度是评估等离子体特性的重要参量.本文通过对等离子体光电流信号和发射光谱的测量及放电图像的拍摄,研究了不同放电电流和气压对同轴枪放电等离子体的动力学特性、电子密度与杂质发射光谱的影响.实验结果表明:气压为10 Pa,放电电流为30—70 k A时,等离子体在枪内的加速时间随电流的增大而缩短,等离子体中阳极和阴极杂质光谱均随电流的增大而增强;放电电流为40 k A,气压为10—70 Pa时,等离子体加速时间随气压的增大而增长,等离子体中阴极杂质光谱强度随气压的增加不断降低,而阳极杂质光谱强度却是逐渐增加的,不过其增长速率逐渐减小.分析认为,不同放电电流和气压决定了等离子体获能、加速特性及电子密度,协同影响金属杂质特性.同轴枪喷口处发生等离子体箍缩效应与高密度电弧在枪内加速时间是影响阳极烧蚀的重要因素,阴极材料的杂质是离子轰击溅射产生的,主要依赖于离子携带的能量.展开更多
A laser-produced plasma(LPP) source was built using liquid as target and a Nd:YAG laser as the irradiation laser, and the LPP source's radiation with ethanol and acetone target respectively was measured by an AXUV...A laser-produced plasma(LPP) source was built using liquid as target and a Nd:YAG laser as the irradiation laser, and the LPP source's radiation with ethanol and acetone target respectively was measured by an AXUV100 silicon photodiode combined with a McPHERSON model 247 grazing incidence monochromator of the resolution Δλ≤0.075 nm and the wavelength scanning interval 0.5 nm. Both ethanol and acetone target LPP source had EUV emission at 11~20 nm wavelength. The comparison between the spectra of the two kinds of target materials shows that all the two kinds of target source's spectra are the result of oxygen ions' transitions under current source's parameters, but the spectrum intensity from different target sources is different. The spectra intensity from the ethanol target is higher than that from the acetone target. In addition, the target liquid is forced into the vacuum chamber by the background pressure supported by the connected external high pressure gas, and the influence of the background pressure on the source's intensity is investigated.展开更多
A neon plasma jet was generated in air, driven by a 9 kHz sinusoidal power supply. The characteristics of the plasma plume and the optical spectra with plasma propagation for different applied voltages were investigat...A neon plasma jet was generated in air, driven by a 9 kHz sinusoidal power supply. The characteristics of the plasma plume and the optical spectra with plasma propagation for different applied voltages were investigated. By increasing the applied voltage, the plasma plume first increases and then retracts to become short and bulky. The shortened effect of Ne plasma plume (about 10 mm) for the further voltage increasing is more apparent than that of He (about 3 mm) and Ar (about 1 mm). Emission intensity of the N2 (337 am) increases with the applied voltage, gradually substituting the emission intensity of Ne (702 nm and 585 am) as the noticeable radiation. At the nozzle opening, the Ne (702 am) emission dominates, while the Ne (585 nm) emission is most noticeable around the tip of the plasma plume. The spatial distribution of the three spectral lines indicates that Ne (702 nm) emission decreases dramatically with plasma propagation while Ne (585 am) and N2 (337 nm) emissions reach their maxima at the middle of the plasma plume. The results indicate that the Ne (702 nm) emission is much more sensitive to the average electron temperature and the density of the high-energy electrons, so it changes greatly at the tube nozzle and little at the tip region as the voltage increases. The population of high-energy electrons, the average electron temperature, the collision with air molecules and the Penning effect between Ne metastables and air molecules may explain their different variations with plasma propagating and voltage increasing.展开更多
The electric and plasma characteristics of RF discharge plasma actuation under varying pressure have been inves- tigated experimentally. As the pressure increases, the shapes of charge-voltage Lissajous curves vary, a...The electric and plasma characteristics of RF discharge plasma actuation under varying pressure have been inves- tigated experimentally. As the pressure increases, the shapes of charge-voltage Lissajous curves vary, and the discharge energy increases. The emission spectra show significant difference as the pressure varies. When the pressure is 1000 Pa, the electron temperature is estimated to be 4.139 eV, the electron density and the vibrational temperature of plasma are /peak /lPeak which describes the electron temper- 4.71 x 10^11 cm-3 and 1.27 eV, respectively. The ratio of spectral lines "391.4/'380.5 ature hardly changes when the pressure varies between 5000-30000 Pa, while it increases remarkably with the pressure below 5000 Pa, indicating a transition from filamentary discharge to glow discharge. The characteristics of emission spec- trum are obviously influenced by the loading power. With more loading power, both of the illumination and emission spectrum intensity increase at 10000 Pa. The pin-pin electrode RF discharge is arc-like at power higher than 33 W, which results in a macroscopic air temperature increase.展开更多
基金supported by Department of Science and Technology of Jilin Province of China(Nos.YDZJ202301 ZYTS481,202202901032GX,and 20230402068GH)。
文摘Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this study presents a novel method for acquiring plasma spectral information from various spatial directions.A parabolic-shaped plasma spectral collection device(PSCD)is employed to effectively collect more spectral information into the spectrometer,thereby enhancing the overall spectral intensity.The research objects in this study were soil samples containing different concentrations of heavy metals Pb,Cr,and Cd.The results indicate that the PSCD significantly enhances the spectral signal,with an enhancement rate of up to 45%.Moreover,the signal-to-noise ratio also increases by as much as 36%.Simultaneously,when compared to the absence of a device,it is found that there is no significant variation in plasma temperature when the PSCD is utilized.This observation eliminates the impact of the spatial effect caused by the PSCD on the spectral intensity.Consequently,a concentrationspectral intensity relationship curve is established under the PSCD.The results revealed that the linear fitting R^(2)for Pb,Cr,and Cd increased by 0.011,0.001,and 0.054,respectively.Additionally,the limit of detection(LOD)decreased by 0.361 ppm,0.901 ppm,and 0.602 ppm,respectively.These findings indicate that the spectral enhancement rate elevates with the increase in heavy metal concentration.Hence,the PSCD can effectively enhance the spectral intensity and reduce the detection limit of heavy metals in soil.
文摘The plasma rotation velocity were measured in HL-1M with Doppler shifts of CⅢ、 C Ⅱ、 O Ⅱ and H. line by a SKD high resolution spectrometer. The effects .of density' hydrogen pellet injection and carbon impurities injected by laser-blow-off on toroidal(V) and poloidal (Vθ)rotation velocity have been observed. The Vθ measured from H. line is only half of that from C Ⅱ impurity line.
文摘Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ignition mechanism of EFIs directly igniting pyrotechnics.An oscilloscope,a photon Doppler velocimetry,and a plasma spectrum measurement system were employed to obtain information of electric characteristics,impact pressure,and plasma temperature.The results of the electric characteristics and the impact pressure were inconsistent with ignition results.The only thing that the ignition success tests had in common was that their plasma all had a relatively long period of high-temperature duration(HTD).It eventually concludes that the ignition mechanism in this research is the microconvection heat transfer rather than the shock initiation,which differs from that of exploding foil initiators detonating explosives.Furthermore,the methods for evaluating the ignition success of semiconductor bridge initiators are not entirely applicable to the tests mentioned in this paper.The HTD is the critical parameter for judging the ignition success,and it is influenced by two factors:the late time discharge and the energy of the electric explosion.The longer time of the late time discharge and the more energy of the electric explosion,the easier it is to expand the HTD,which improves the probability of the ignition success.
基金supported by the National Basic Research Program (973) of China (No. 2006CB200302)the Natural Science Foundation of Jiangsu Province (No.BK2007224)the Scientific Research Starting Foundation for Returned Overseas Chinese Scholars,Ministry ofEducation,China
文摘Although the approach using non-thermal plasma(NTP) for deNOx has been studied for over 15 years,how to achieve higher removal effciency with lower cost is still a barrier for its industrial application.In order to investigate the impact of the argon additive on electron density,energy and nitric oxide reduction process in plasma,the spectrum of the dielectric barrier discharge at atmospheric pressure in a coaxial reactor was measured using the monochromater with high resolution.The comparative experiments for NO reduction were carried out simultaneously in N2/O2/NO plasma stream with and without argon,respectively.The nitrogen molecular spectrum which is attributed to the energy level transition(C^3πu→ B^3πg) was compared in the wavelength range 300-480 nm and the electron density and temperature were determined based on the relative intensities and Stark broadening width of spectral lines.The spectrum results indicated that the argon additive could enhance the intensity of emissive spectrum of plasma,thus the electron concentration as well as the energy was increased,and finally prompted the ionization rate to produce active N,O and O3.The results of NO reduction showed that NO conversion effciency increased in the range of 10%-30% with 5% addition of argon in stream comparing with the condition without argon additive.This study will play a positive role in the industrial application of dielectric barrier discharge deNOx reactor.
基金supported by National Natural Science Foundation of China(Nos.10675121,10705028 and 10605025)National Basic Research Program of China(No.2008CB717800)
文摘Continuous emission spectrum measurement is applied for the inconvenient diagnos- tics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presented to analyze the spectrum in low temperature plasma. The validity of this model is discussed in a wide range of discharge parameters, including electron tem- perature and ionization degree. Through the simplified model, the continuous emission spectrum in a collisional argon internal inductively coupled plasma is experimentally measured to determine the electron temperature distribution for different gas pressures and radio-frequency powers. The inverse Abel transform is also applied for a better spatially resoluted results. Meanwhile, the result of the continuous emission spectrum measurement is compared to that of the electrostatic double probes, which indicates the effectiveness of this method.
文摘Optimal condition for <sup>13</sup>N radioisotope production through <sup>12</sup>C (d,n) 13N within plasma focus device is investigated. As the deuteron spectrum follows the empirical power law of the form E<sup>-m</sup>, it is shown that the activity decreases by increasing the value of m. Unlike the fact that the repetition rate increases the activity, it is possible to achieve higher activities by increasing the bombardment time at a fixed repetition rate.
文摘同轴枪放电可以产生高速度、高密度及高能量密度的等离子体射流,在等离子体空间推进、天体物理和高温核聚变等研究领域具有广泛的应用.基于同轴枪的实际应用,等离子体速度、密度、纯净度是评估等离子体特性的重要参量.本文通过对等离子体光电流信号和发射光谱的测量及放电图像的拍摄,研究了不同放电电流和气压对同轴枪放电等离子体的动力学特性、电子密度与杂质发射光谱的影响.实验结果表明:气压为10 Pa,放电电流为30—70 k A时,等离子体在枪内的加速时间随电流的增大而缩短,等离子体中阳极和阴极杂质光谱均随电流的增大而增强;放电电流为40 k A,气压为10—70 Pa时,等离子体加速时间随气压的增大而增长,等离子体中阴极杂质光谱强度随气压的增加不断降低,而阳极杂质光谱强度却是逐渐增加的,不过其增长速率逐渐减小.分析认为,不同放电电流和气压决定了等离子体获能、加速特性及电子密度,协同影响金属杂质特性.同轴枪喷口处发生等离子体箍缩效应与高密度电弧在枪内加速时间是影响阳极烧蚀的重要因素,阴极材料的杂质是离子轰击溅射产生的,主要依赖于离子携带的能量.
文摘A laser-produced plasma(LPP) source was built using liquid as target and a Nd:YAG laser as the irradiation laser, and the LPP source's radiation with ethanol and acetone target respectively was measured by an AXUV100 silicon photodiode combined with a McPHERSON model 247 grazing incidence monochromator of the resolution Δλ≤0.075 nm and the wavelength scanning interval 0.5 nm. Both ethanol and acetone target LPP source had EUV emission at 11~20 nm wavelength. The comparison between the spectra of the two kinds of target materials shows that all the two kinds of target source's spectra are the result of oxygen ions' transitions under current source's parameters, but the spectrum intensity from different target sources is different. The spectra intensity from the ethanol target is higher than that from the acetone target. In addition, the target liquid is forced into the vacuum chamber by the background pressure supported by the connected external high pressure gas, and the influence of the background pressure on the source's intensity is investigated.
基金supported by National Natural Science Fundation of China(No.61271053)the Natural Science Foundation of Jiangsu Province of China(No.BK2012737)the Foundation for Excellent Youth Scholars of Southeast University,China
文摘A neon plasma jet was generated in air, driven by a 9 kHz sinusoidal power supply. The characteristics of the plasma plume and the optical spectra with plasma propagation for different applied voltages were investigated. By increasing the applied voltage, the plasma plume first increases and then retracts to become short and bulky. The shortened effect of Ne plasma plume (about 10 mm) for the further voltage increasing is more apparent than that of He (about 3 mm) and Ar (about 1 mm). Emission intensity of the N2 (337 am) increases with the applied voltage, gradually substituting the emission intensity of Ne (702 nm and 585 am) as the noticeable radiation. At the nozzle opening, the Ne (702 am) emission dominates, while the Ne (585 nm) emission is most noticeable around the tip of the plasma plume. The spatial distribution of the three spectral lines indicates that Ne (702 nm) emission decreases dramatically with plasma propagation while Ne (585 am) and N2 (337 nm) emissions reach their maxima at the middle of the plasma plume. The results indicate that the Ne (702 nm) emission is much more sensitive to the average electron temperature and the density of the high-energy electrons, so it changes greatly at the tube nozzle and little at the tip region as the voltage increases. The population of high-energy electrons, the average electron temperature, the collision with air molecules and the Penning effect between Ne metastables and air molecules may explain their different variations with plasma propagating and voltage increasing.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11472306,51336011,and 51407197)
文摘The electric and plasma characteristics of RF discharge plasma actuation under varying pressure have been inves- tigated experimentally. As the pressure increases, the shapes of charge-voltage Lissajous curves vary, and the discharge energy increases. The emission spectra show significant difference as the pressure varies. When the pressure is 1000 Pa, the electron temperature is estimated to be 4.139 eV, the electron density and the vibrational temperature of plasma are /peak /lPeak which describes the electron temper- 4.71 x 10^11 cm-3 and 1.27 eV, respectively. The ratio of spectral lines "391.4/'380.5 ature hardly changes when the pressure varies between 5000-30000 Pa, while it increases remarkably with the pressure below 5000 Pa, indicating a transition from filamentary discharge to glow discharge. The characteristics of emission spec- trum are obviously influenced by the loading power. With more loading power, both of the illumination and emission spectrum intensity increase at 10000 Pa. The pin-pin electrode RF discharge is arc-like at power higher than 33 W, which results in a macroscopic air temperature increase.