7 YSZ coating was prepared by plasma sprayphysical vapor deposition(PS-PVD) technique based on a specific experimental design.The microstructure and deposition properties of 7 YSZ coating along the radius of plasma je...7 YSZ coating was prepared by plasma sprayphysical vapor deposition(PS-PVD) technique based on a specific experimental design.The microstructure and deposition properties of 7 YSZ coating along the radius of plasma jet were investigated in detail.Results show that the coating presents regional characteristic in the radial direction,which could be divided into three typical zones:In Zone Ⅰ,the coating is all composed of columnar structures with cauliflower structure,and the coating properties including the surface roughness and deposition efficiency(DE) are almost stable;in Zone Ⅲ,the coating is made up of solid particles,droplet and gas phase mixed without columnar structures;Zone Ⅱ is between Zone Ⅰ and ZoneⅢ, in which there are columns with domed top and small particles.Based on experiment results,a model on the state and distribution of particles in plasma jet was proposed to clarify the regional characteristic.This study is helpful to comprehend and control coatings deposition by PS-PVD technique.展开更多
Spherical Gd_(2)Zr_(2)O_(7)hollow powders with a mean size of 8.8μm were fabricated as feedstock for thermal barrier coatings(TBCs)by spray-drying.The single-ceramic-layer(SCL)Gd_(2)Zr_(2)O_(7)TBCs and double-ceramic...Spherical Gd_(2)Zr_(2)O_(7)hollow powders with a mean size of 8.8μm were fabricated as feedstock for thermal barrier coatings(TBCs)by spray-drying.The single-ceramic-layer(SCL)Gd_(2)Zr_(2)O_(7)TBCs and double-ceramic-layer(DCL)Gd_(2)Zr_(2)O_(7)/YSZ TBCs with quasicolumnar structure were successfully fabricated by plasma spray-physical vapor deposition(PS-PVD).Tensile and water-quenching tests were applied to evaluate TBCs performances.The results show that adhesion strength of SCL Gd_(2)Zr_(2)O_(7)TBCs and DCL Gd_(2)Zr_(2)O_(7)/YSZ TBCs is36.5 MPa and 15.4 MPa,respectively.The delamination of SCL Gd_(2)Zr_(2)O_(7)TBCs and DCL Gd_(2)Zr_(2)O_(7)/YSZ TBCs in the tensile test takes place at the middle and bottom of Gd_(2)Zr_(2)O_(7)layer,respectively,due to relatively lower fracture toughness of Gd_(2)Zr_(2)O_(7)layer.After 40 cycles of water-quenching test,DCL Gd_(2)Zr_(2)O_(7)/YSZ TBC surface keeps relatively intact,while SCL Gd_(2)Zr_(2)O_(7)TBC surface shows 20%visible destroyed regions,which demonstrates that DCL Gd_(2)Zr_(2)O_(7)/YSZ TBCs have a better thermal shock resistance than SCL Gd_(2)Zr_(2)O_(7)TBCs.The cracks in the SCL system propagate near thermally grown oxide(TGO)due to thermal mismatch and TGO growing stress,while cracks in the DCL system propagate in the Gd_(2)Zr_(2)O_(7)layer due to its relatively lower fracture toughness.展开更多
The unique columnar structure endows thermal barrier coatings(TBCs)prepared by plasma spray-physical vapor deposition(PS-PVD)with high thermal insulation and long lifetime.However,the coating delamination failure resu...The unique columnar structure endows thermal barrier coatings(TBCs)prepared by plasma spray-physical vapor deposition(PS-PVD)with high thermal insulation and long lifetime.However,the coating delamination failure resulting from an intra-column fracture(within a column rather than between columns)is a bottleneck in the solid dust particle impact environment for aero-engine.To clarify the intra-column fracture mechanism,a basic layer deposition model is developed to explore a heterogeneous weak-to-strong layered structure formed by a local transient in-situ deposit temperature.During the PS-PVD,an in-situ deposit surface is continuously updated due to constantly being covered by vapor condensation,showing a transient temperature,which means that the in-situ deposit surface temperature rises sharply in short period of 0.2 s of depositing a thin layer during a single pass.Meanwhile,the increasing temperature of the in-situ deposit surface results in an experimentally observed heterogeneous weak-to-strong structure,showing a continuous transition from a porous weak structure at the bottom region to a dense strong structure at the top region.This structure easily makes the intra-column fracture at the porous weak region.The results shed light on improving TBC lifetime by restraining the intra-column fracture.展开更多
Plasma spray physical vapor deposition(PS-PVD)(Gd_(0.9)Yb_(0.1))_(2)Zr_(2)O_(7)(GYbZ)thermal barrier coatings(TBCs)exhibited better silicate-phobicity than coatings produced by electron beam physical vapor depo-sition...Plasma spray physical vapor deposition(PS-PVD)(Gd_(0.9)Yb_(0.1))_(2)Zr_(2)O_(7)(GYbZ)thermal barrier coatings(TBCs)exhibited better silicate-phobicity than coatings produced by electron beam physical vapor depo-sition.In combination with PS-PVD and ultrafast laser direct writing technology,biomimetic structured GYbZ TBCs,with a triple-scale micro/nano surface microstructure,were obtained.Laser ablating on the PS-PVD GYbZ coating enhanced the surface roughness,improving its wear resistance without increasing the surface hardness.Furthermore,during the laser ablation processing,numerous nanoparticles were deposited in-situ in the gaps between columns of the coating,reducing the coating Young’s modulus.The simulated temperature field and heat flux field demonstrated that the presence of numerous interfaces between small columns of the PS-PVD coatings is beneficial to thermal insulation.However,laser ablation decreased the coating thickness,reducing the thermal insulation by around 20%-30%as compared to its PS-PVD counterpart,suggesting that a moderate increase in the coating thickness should be considered when designing an efficient TBC system.展开更多
Plasma spray-physical vapor deposition(PS-PVD)as a novel process was used to prepare feather-like columnar thermal barrier coatings(TBCs).This special microstructure shows good strain tolerance and non-line-of-sight(N...Plasma spray-physical vapor deposition(PS-PVD)as a novel process was used to prepare feather-like columnar thermal barrier coatings(TBCs).This special microstructure shows good strain tolerance and non-line-of-sight(NLOS)deposition,giving great potential application in aero-engine.However,due to serious service environment of aero-engine,particle erosion performance is a weakness for PS-PVD 7YSZ TBCs.As a solution,an Al-modification approach was proposed in this investigation.Through in-situ reaction of Al and ZrO2,anα-Al2O3 overlay can be formed on the surface of 7YSZ columnar coating.The results demonstrate that this approach can improve particle erosion resistance since hardness improvement of Al-modified TBCs.Meanwhile,as another important performance of thermal cycle,it has a better optimization with 350-cycle water-quenching,compared with the as-sprayed TBCs.展开更多
基金financially supported by Guangdong Natural Science Foundation (No.2016A030312015)the Science and Technology Cooperation Project of Guangdong Province (No.2013B050800027)the Science and Technology Cooperation Project of Guangzhou (No.201508030001)。
文摘7 YSZ coating was prepared by plasma sprayphysical vapor deposition(PS-PVD) technique based on a specific experimental design.The microstructure and deposition properties of 7 YSZ coating along the radius of plasma jet were investigated in detail.Results show that the coating presents regional characteristic in the radial direction,which could be divided into three typical zones:In Zone Ⅰ,the coating is all composed of columnar structures with cauliflower structure,and the coating properties including the surface roughness and deposition efficiency(DE) are almost stable;in Zone Ⅲ,the coating is made up of solid particles,droplet and gas phase mixed without columnar structures;Zone Ⅱ is between Zone Ⅰ and ZoneⅢ, in which there are columns with domed top and small particles.Based on experiment results,a model on the state and distribution of particles in plasma jet was proposed to clarify the regional characteristic.This study is helpful to comprehend and control coatings deposition by PS-PVD technique.
基金financially supported by the National Key Research and Development Program of China(No.2017YFB0306100)the National Natural Science Foundation of China(No.51771059)+2 种基金the Natural Science Foundation of Hunan Province(No.2018JJ2524)the International Scientific Technological Cooperation Projects of China(Nos.2015DFR50580 and 2013DFA31440)the Science and Technology Planning Project of Guangdong Province(No.2017A070701027)。
文摘Spherical Gd_(2)Zr_(2)O_(7)hollow powders with a mean size of 8.8μm were fabricated as feedstock for thermal barrier coatings(TBCs)by spray-drying.The single-ceramic-layer(SCL)Gd_(2)Zr_(2)O_(7)TBCs and double-ceramic-layer(DCL)Gd_(2)Zr_(2)O_(7)/YSZ TBCs with quasicolumnar structure were successfully fabricated by plasma spray-physical vapor deposition(PS-PVD).Tensile and water-quenching tests were applied to evaluate TBCs performances.The results show that adhesion strength of SCL Gd_(2)Zr_(2)O_(7)TBCs and DCL Gd_(2)Zr_(2)O_(7)/YSZ TBCs is36.5 MPa and 15.4 MPa,respectively.The delamination of SCL Gd_(2)Zr_(2)O_(7)TBCs and DCL Gd_(2)Zr_(2)O_(7)/YSZ TBCs in the tensile test takes place at the middle and bottom of Gd_(2)Zr_(2)O_(7)layer,respectively,due to relatively lower fracture toughness of Gd_(2)Zr_(2)O_(7)layer.After 40 cycles of water-quenching test,DCL Gd_(2)Zr_(2)O_(7)/YSZ TBC surface keeps relatively intact,while SCL Gd_(2)Zr_(2)O_(7)TBC surface shows 20%visible destroyed regions,which demonstrates that DCL Gd_(2)Zr_(2)O_(7)/YSZ TBCs have a better thermal shock resistance than SCL Gd_(2)Zr_(2)O_(7)TBCs.The cracks in the SCL system propagate near thermally grown oxide(TGO)due to thermal mismatch and TGO growing stress,while cracks in the DCL system propagate in the Gd_(2)Zr_(2)O_(7)layer due to its relatively lower fracture toughness.
基金supported by the National Natural Science Foundation of China (No.51901175)the China Postdoctoral Science Foundation Funded Project (No.2020T130499)the National Program for Support of Top-notch Young Professionals.
文摘The unique columnar structure endows thermal barrier coatings(TBCs)prepared by plasma spray-physical vapor deposition(PS-PVD)with high thermal insulation and long lifetime.However,the coating delamination failure resulting from an intra-column fracture(within a column rather than between columns)is a bottleneck in the solid dust particle impact environment for aero-engine.To clarify the intra-column fracture mechanism,a basic layer deposition model is developed to explore a heterogeneous weak-to-strong layered structure formed by a local transient in-situ deposit temperature.During the PS-PVD,an in-situ deposit surface is continuously updated due to constantly being covered by vapor condensation,showing a transient temperature,which means that the in-situ deposit surface temperature rises sharply in short period of 0.2 s of depositing a thin layer during a single pass.Meanwhile,the increasing temperature of the in-situ deposit surface results in an experimentally observed heterogeneous weak-to-strong structure,showing a continuous transition from a porous weak structure at the bottom region to a dense strong structure at the top region.This structure easily makes the intra-column fracture at the porous weak region.The results shed light on improving TBC lifetime by restraining the intra-column fracture.
基金supported by Nature Science Foun-dations of China(NSFC)under grant Nos.U21B2052 and 52102057。
文摘Plasma spray physical vapor deposition(PS-PVD)(Gd_(0.9)Yb_(0.1))_(2)Zr_(2)O_(7)(GYbZ)thermal barrier coatings(TBCs)exhibited better silicate-phobicity than coatings produced by electron beam physical vapor depo-sition.In combination with PS-PVD and ultrafast laser direct writing technology,biomimetic structured GYbZ TBCs,with a triple-scale micro/nano surface microstructure,were obtained.Laser ablating on the PS-PVD GYbZ coating enhanced the surface roughness,improving its wear resistance without increasing the surface hardness.Furthermore,during the laser ablation processing,numerous nanoparticles were deposited in-situ in the gaps between columns of the coating,reducing the coating Young’s modulus.The simulated temperature field and heat flux field demonstrated that the presence of numerous interfaces between small columns of the PS-PVD coatings is beneficial to thermal insulation.However,laser ablation decreased the coating thickness,reducing the thermal insulation by around 20%-30%as compared to its PS-PVD counterpart,suggesting that a moderate increase in the coating thickness should be considered when designing an efficient TBC system.
基金We would like to acknowledge the financial support from the National Natural Science Foundation of China(52172067)Guangdong Province Outstanding Youth Foundation(2021B1515020038)+1 种基金Guangdong Special Support Program(2019BT02C629)Guangdong Academy of Sciences Program(2020GDASYL-20200104030).
文摘Plasma spray-physical vapor deposition(PS-PVD)as a novel process was used to prepare feather-like columnar thermal barrier coatings(TBCs).This special microstructure shows good strain tolerance and non-line-of-sight(NLOS)deposition,giving great potential application in aero-engine.However,due to serious service environment of aero-engine,particle erosion performance is a weakness for PS-PVD 7YSZ TBCs.As a solution,an Al-modification approach was proposed in this investigation.Through in-situ reaction of Al and ZrO2,anα-Al2O3 overlay can be formed on the surface of 7YSZ columnar coating.The results demonstrate that this approach can improve particle erosion resistance since hardness improvement of Al-modified TBCs.Meanwhile,as another important performance of thermal cycle,it has a better optimization with 350-cycle water-quenching,compared with the as-sprayed TBCs.