Fe/Mo composite coatings were prepared by air plasma spraying (APS) using Fe-based and Mo-based amorphous and nanocrys- talline mixed powders. Microstructural studies show that the composite coatings present a layer...Fe/Mo composite coatings were prepared by air plasma spraying (APS) using Fe-based and Mo-based amorphous and nanocrys- talline mixed powders. Microstructural studies show that the composite coatings present a layered structure with low porosity due to adding the self-bonded Mo-based alloy. Corrosion behaviors of the composite coatings, the Fe-based coatings and the Mo-based coatings were in- vestigated by electrochemical measurements and salt spray tests. Electrochemical results show that the composite coatings exhibit a lower polarization current density and higher corrosion potentials than the Fe-based coating when tested in 3.5wt% NaC1 solutions, indicating supe- rior corrosion resistance compared with the Fe-based coating. Also with the increase in addition of the Mo-based alloy, a raised corrosion re- sistance, inferred by an increase in corrosion potential and a decrease in polarization current density, can be found. The results of salt spray tests again show that the corrosion resistance is enhanced by adding the Mo-based alloy, which helps to reduce the porosity of the composite coatings and enhance the stability of the passive films.展开更多
Microstructure of plasma spray boron carbide coating was studied by SEM and TEM. Its physical, mechanical and electrical properties were measured. The results showed that high microhardness, modulus and low porosity o...Microstructure of plasma spray boron carbide coating was studied by SEM and TEM. Its physical, mechanical and electrical properties were measured. The results showed that high microhardness, modulus and low porosity of B4C coating were manufactured by plasma spray. It was lamellar packing and dense. The B4C coating examined here contained two principal structures and two impurity phase besides major phase. The relatively small value of Young's modulus, comparing with that of the bulk materials, is explained by porosity . The Fe impurity phase could account for the relatively high electrical conductivity of boron carbide coating by comparing with the general boron carbide materials.展开更多
Multi-phase self-reaction composite (denoted as MPc) coatings containing ceramic and metal multi-phases were fabricated by plasma spraying Fe2O3-Al composite powders. This technology successfully combines self-propaga...Multi-phase self-reaction composite (denoted as MPc) coatings containing ceramic and metal multi-phases were fabricated by plasma spraying Fe2O3-Al composite powders. This technology successfully combines self-propagating high-temperature synthesis with plasma spraying. The morphology of the composite powders was examined by scanning electron microscope (SEM). The phase composition and microstructure of the composite coating are studied.展开更多
Nanostructured and conventional Al2O3-13wt.%TiO2 ceramic coatings were prepared by plasma spraying with nanostructured agglomerated and conventional powders, respectively. The microstructure and microhardness of the c...Nanostructured and conventional Al2O3-13wt.%TiO2 ceramic coatings were prepared by plasma spraying with nanostructured agglomerated and conventional powders, respectively. The microstructure and microhardness of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and microhardness measurement. Meanwhile, the friction and wear behaviors were analyzed and compared using a ball-on-disk tribometer. The results show that the conventional coating has lamellar stacking characteristic and has some pores. However, the nanostructured coating shows a bimodal microstructure, which is composed of both fully melted regions and partially melted regions. According to the microstructural difference, the partially melted regions can be divided into liquid-phase sintered regions (a three-dimensional net or skeleton-like structure: Al2O3-rich submicron particles embedded in the TiO2-rich matrix) and solid-phase sintered regions (remained nanoparticles). The microstructural characteristics of the liquid-phase sintered region are formed due to the selective melting of TiO2 nanoparticles during plasma spraying. On the other hand, the TiO2 and Al2O3 nanoparticles of the solid-phase sintered regions are all unmelted during plasma spraying. Due to the existence of nanostructured microstructures, the nanostructured coating has a higher microhardness, a lower friction coefficient, and a better wear resistance than the conventional coating.展开更多
WCp/NiCrBSi composite coatings have been deposited by plasma spraying with the mixed powders of WC-12Ni and NiCrBSi. The coatings consist mainly of WC, γ-Ni, Ni3B, CrB, Cr2B, M7C3, M23C6 and W2C phases. The W2C conte...WCp/NiCrBSi composite coatings have been deposited by plasma spraying with the mixed powders of WC-12Ni and NiCrBSi. The coatings consist mainly of WC, γ-Ni, Ni3B, CrB, Cr2B, M7C3, M23C6 and W2C phases. The W2C content increases with increasing WC mass fraction in the powders. The porosity and microhardness of the coatings are related to the coating WC content. The excessive WC results in decreasing the microhardness due to increasing the porosity. The WCp/ NiCrBSi coating with 35 % WC mass fraction powder has more excellent erosion resistance. With an increase of impact angles from 15° to 90° the erosion rate of the coating increases, the erosion rate at 15° impact angle being approximately two times lower than that at 90° impact angle. Based on the wear morphology of the coatings at different impact angles, the wear mechanisms were discussed.展开更多
In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying(APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy(SEM), transm...In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying(APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and atomic force microscopy(AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited Co Ni Cr Al Y bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of the γ/γ′-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in Co Ni Cr Al Y bond-coatings with excellent thermal cyclic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate.展开更多
The functionally graded thermal barrier coatings (FG-TBCs) with 80%ZrO2-13%CeO2-7%Y2O3 (C-YSZ)/NiCoCrAlY were prepared using a recently developed supersonic plasma spraying(S-PS) with dual powder feed ports syst...The functionally graded thermal barrier coatings (FG-TBCs) with 80%ZrO2-13%CeO2-7%Y2O3 (C-YSZ)/NiCoCrAlY were prepared using a recently developed supersonic plasma spraying(S-PS) with dual powder feed ports system. The thermal shock experiment of FG-TBCs specimens was carried out by means of the automatic thermal cycle device, in which the samples were heated to 1200℃ by oxygen-acetylene flame jet then water-quenched to ambient temperature. The temperature—time curves of specimens and photographs can be watched on-line and recorded by a computer during the test. The results show that the totally 1mm-thick FG-TBCs have excellent thermal shock resistance due to the fact that the coatings have no any peeling-off after 200 thermal cycles. The microstructures and morphologies of FG-TBCs were characterized and analyzed by SEM.展开更多
In this paper, alloy powders mixed with a molar ratio of Fe : P : C of 80 : 13 : 7 were sprayed on Q235 steel by plasma spray method to prepare coating with amorphous phases. The phase composition of the mixed all...In this paper, alloy powders mixed with a molar ratio of Fe : P : C of 80 : 13 : 7 were sprayed on Q235 steel by plasma spray method to prepare coating with amorphous phases. The phase composition of the mixed alloy powders and prepared coating were characterized by X-ray diffraction ( XRD ). The morphology and the composition cf the coating were analyzed by scanning eleetron microscopy (SEM) nnd energy dispersive apectroscopy ( EDS ). In addition, the thermal stability ef the coating with amorphous phases was characterized by differential thermal analyzer ( DTA ). Tile results showed that, usirtg mixed alloy powders with a molar ratio of Fe: P: C of 80:13:7, the coating containing certain amount of amorphous alloys was suceessathlly prepared through atmospheric plasma spray technique. In the coating, the main phases were determined to be Fe, FeP aad Fe2P. The crystallization of the coating started from about 461°. Tile coating was mechanically adhered to the substrate.展开更多
A gradient coating of Fe-based alloy was manufactured with rare earths (RE) by plasma surfacing on Q235 steel substrate. The coatings were studied by using X-ray diffraction(XRD), scanning electron microscope(SEM), di...A gradient coating of Fe-based alloy was manufactured with rare earths (RE) by plasma surfacing on Q235 steel substrate. The coatings were studied by using X-ray diffraction(XRD), scanning electron microscope(SEM), differential thermal analyzer(DTA), and electron probe micro-analyzer (EPMA). The results show that the phases of the two kinds of coatings(with and without RE) both include α-Fe, Fe7C3, Fe3C, Cr2B, Fe2B and FeB. The microstructure of F314 coating is mainly hypereutectic, the pro-phases Cr7C3 and Cr2B are loose, crassi, spiculate and contain microcracks. The brittleness of the coating is high, and the average hardness is 787 HV. When 0.8wt% RE was added into the F314 alloy, the microstructure varied from hypoeutectic to hypereutectic continuously, The hardness appears as gradient distribution with the highest value of 773 HV, meanwhile, the brittleness decreases significantly. The formation of gradient structure depends on the fallowing factors: (i) the conversion of RE. The addition of RE lowers the elements point and Fe-C eutectic temperature, thus the base metal melting acutely. (ii) the heating of plasma arc. Graded temperature results in directional solidification, thus the gradient structure forms easily. The main reasons for the hardness decrease with RE addition in the alloy are the ratio of hard phase lowering and the hardness of the hard phase decreasing.展开更多
Al2O3p/Al composite coatings were prepared on the surface of AZ31 magnesium alloy by plasma spraying technology with mixed powders of Al and Al2O3. An orthogonal test containing six factors and five levels was carried...Al2O3p/Al composite coatings were prepared on the surface of AZ31 magnesium alloy by plasma spraying technology with mixed powders of Al and Al2O3. An orthogonal test containing six factors and five levels was carried out to acquire the optimum technical parameters. Mierostruetures and properties of the composite coatings were studied. The results show that the coatings consist of Al2O3 particulates distributed uniformly and Al matrix, and the interface between the particulate and matrix is continuous, compact and clean. With increasing the mass fraction of Al2O3 in the mixed powders, the volume fraction of Al2O3 in the coatings iacreases. The Al2O3p/Al composite coating with 14% Al2O3 volume fraction has more compact microstrueture and more satisfactory properties.展开更多
The plasma sprayed thermal barrier coating (TBC) consists of NiCrAlY bond coating and yttria partially stabilized zirconia (YPSZ) top coating. NiCrAlY coating mainly contains Ni solid solution with face centered cubic...The plasma sprayed thermal barrier coating (TBC) consists of NiCrAlY bond coating and yttria partially stabilized zirconia (YPSZ) top coating. NiCrAlY coating mainly contains Ni solid solution with face centered cubic lattice, Al_2O_3 oxides and pores. The most obvious feature of YPSZ coating with tetragonal zirconia is a lot of vertical microcracks in this coating. The thermal insulation capability of the TBC increased with an increase in YPSZ coating thickness, the temperature drop across the TBC increasing from 60℃ to 92℃ with increasing YPSZ coating thickness from 100 μm to 500 μm. The thermal shock resistance of the TBC decreased with increasing YPSZ coating thickness and cracks initiated mainly in original vertical microcrack tips of the YPSZ coating and propagated not only along YPSZ coating/ NiCrAlY coating interface but also through NiCrAlY coating. The oxidation process of the TBC at 1 200℃ can be divided into two stages: transient oxidation stage with rapid oxidation rate and steady oxidation stage with slow oxidation. Their transition time was about 10 hours. The weight gain for 100 hours was 3.222 mg/mm2. It is favorable to increase YPSZ coating toughness and to decrease the pores and oxides of the TBC system for improving thermal shock resistance and oxidation resistance of the TBC.展开更多
Laser surface annealing provides a rapid and efficient means for surface alloying and modification of ceramic materials. In this study, Alumina-13% Titania coatings were sprayed with a water-stabilized plasma spray gu...Laser surface annealing provides a rapid and efficient means for surface alloying and modification of ceramic materials. In this study, Alumina-13% Titania coatings were sprayed with a water-stabilized plasma spray gun. The coated surface was treated by Excimer laser having a wavelength of 248 nm and pulse duration of 24 ns. The surface structure of the treated coating was examined by field emission scanning electron microscope and X-ray diffraction (XRD). A detailed analysis of the effects of various laser parameters including laser energy density (fluence), pulse repetition rate (PRR), and number of pulses on the morphology and the microstructure of the coatings are presented.展开更多
在 Zr O2 - Ni Co Cr Al Y梯度涂层中 ,由基体到涂层表面 ,Zr O2 的含量逐渐增多 ,Ni Co Cr Al Y的含量逐渐减少 ,形成一种无宏观结合界面的成分连续变化的组织结构。随 Zr O2 组元含量的升高 ,Zr O2 - Ni Co Cr Al Y复合涂层的密度基...在 Zr O2 - Ni Co Cr Al Y梯度涂层中 ,由基体到涂层表面 ,Zr O2 的含量逐渐增多 ,Ni Co Cr Al Y的含量逐渐减少 ,形成一种无宏观结合界面的成分连续变化的组织结构。随 Zr O2 组元含量的升高 ,Zr O2 - Ni Co Cr Al Y复合涂层的密度基本呈线性降低 ;涂层硬度则先降低后升高 ,含 6 0 vol% Zr O2 的复合涂层具有最低的硬度值 ;富含 Ni Co Cr Al Y组元的复合涂层的孔隙率略低。与双层涂层相比 ,成分梯度化的分布使梯度涂层的内聚强度和涂层与基体的结合强度都得到了明显地提高 ;涂层与基体的结合界面是梯度涂层展开更多
基金financially supported by the Special Fund for Basic Scientific Research of Central Colleges, Chang’an University (No.CHD2011JC126)the Special Fund for Basic Research Support Plan of Chang’an Universitythe Open Fund of the Engineering Research Center of Transportation Materials, Ministry of Education of China
文摘Fe/Mo composite coatings were prepared by air plasma spraying (APS) using Fe-based and Mo-based amorphous and nanocrys- talline mixed powders. Microstructural studies show that the composite coatings present a layered structure with low porosity due to adding the self-bonded Mo-based alloy. Corrosion behaviors of the composite coatings, the Fe-based coatings and the Mo-based coatings were in- vestigated by electrochemical measurements and salt spray tests. Electrochemical results show that the composite coatings exhibit a lower polarization current density and higher corrosion potentials than the Fe-based coating when tested in 3.5wt% NaC1 solutions, indicating supe- rior corrosion resistance compared with the Fe-based coating. Also with the increase in addition of the Mo-based alloy, a raised corrosion re- sistance, inferred by an increase in corrosion potential and a decrease in polarization current density, can be found. The results of salt spray tests again show that the corrosion resistance is enhanced by adding the Mo-based alloy, which helps to reduce the porosity of the composite coatings and enhance the stability of the passive films.
文摘Microstructure of plasma spray boron carbide coating was studied by SEM and TEM. Its physical, mechanical and electrical properties were measured. The results showed that high microhardness, modulus and low porosity of B4C coating were manufactured by plasma spray. It was lamellar packing and dense. The B4C coating examined here contained two principal structures and two impurity phase besides major phase. The relatively small value of Young's modulus, comparing with that of the bulk materials, is explained by porosity . The Fe impurity phase could account for the relatively high electrical conductivity of boron carbide coating by comparing with the general boron carbide materials.
基金financially supported by the natural science Foundation of Hebei China(Grant No.599031)
文摘Multi-phase self-reaction composite (denoted as MPc) coatings containing ceramic and metal multi-phases were fabricated by plasma spraying Fe2O3-Al composite powders. This technology successfully combines self-propagating high-temperature synthesis with plasma spraying. The morphology of the composite powders was examined by scanning electron microscope (SEM). The phase composition and microstructure of the composite coating are studied.
基金supported by the National Natural Science Foundation of China (Nos. 59975046 and 50305010)the Key Natural Science Foundation of Ji-angsu Province, China (No. BK2004005)
文摘Nanostructured and conventional Al2O3-13wt.%TiO2 ceramic coatings were prepared by plasma spraying with nanostructured agglomerated and conventional powders, respectively. The microstructure and microhardness of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and microhardness measurement. Meanwhile, the friction and wear behaviors were analyzed and compared using a ball-on-disk tribometer. The results show that the conventional coating has lamellar stacking characteristic and has some pores. However, the nanostructured coating shows a bimodal microstructure, which is composed of both fully melted regions and partially melted regions. According to the microstructural difference, the partially melted regions can be divided into liquid-phase sintered regions (a three-dimensional net or skeleton-like structure: Al2O3-rich submicron particles embedded in the TiO2-rich matrix) and solid-phase sintered regions (remained nanoparticles). The microstructural characteristics of the liquid-phase sintered region are formed due to the selective melting of TiO2 nanoparticles during plasma spraying. On the other hand, the TiO2 and Al2O3 nanoparticles of the solid-phase sintered regions are all unmelted during plasma spraying. Due to the existence of nanostructured microstructures, the nanostructured coating has a higher microhardness, a lower friction coefficient, and a better wear resistance than the conventional coating.
文摘WCp/NiCrBSi composite coatings have been deposited by plasma spraying with the mixed powders of WC-12Ni and NiCrBSi. The coatings consist mainly of WC, γ-Ni, Ni3B, CrB, Cr2B, M7C3, M23C6 and W2C phases. The W2C content increases with increasing WC mass fraction in the powders. The porosity and microhardness of the coatings are related to the coating WC content. The excessive WC results in decreasing the microhardness due to increasing the porosity. The WCp/ NiCrBSi coating with 35 % WC mass fraction powder has more excellent erosion resistance. With an increase of impact angles from 15° to 90° the erosion rate of the coating increases, the erosion rate at 15° impact angle being approximately two times lower than that at 90° impact angle. Based on the wear morphology of the coatings at different impact angles, the wear mechanisms were discussed.
基金provided by Technical Education Quality Improvement Programme-Ⅱ(TEQIP-Ⅱ)at MNNIT Allahabad
文摘In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying(APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and atomic force microscopy(AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited Co Ni Cr Al Y bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of the γ/γ′-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in Co Ni Cr Al Y bond-coatings with excellent thermal cyclic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate.
文摘The functionally graded thermal barrier coatings (FG-TBCs) with 80%ZrO2-13%CeO2-7%Y2O3 (C-YSZ)/NiCoCrAlY were prepared using a recently developed supersonic plasma spraying(S-PS) with dual powder feed ports system. The thermal shock experiment of FG-TBCs specimens was carried out by means of the automatic thermal cycle device, in which the samples were heated to 1200℃ by oxygen-acetylene flame jet then water-quenched to ambient temperature. The temperature—time curves of specimens and photographs can be watched on-line and recorded by a computer during the test. The results show that the totally 1mm-thick FG-TBCs have excellent thermal shock resistance due to the fact that the coatings have no any peeling-off after 200 thermal cycles. The microstructures and morphologies of FG-TBCs were characterized and analyzed by SEM.
文摘In this paper, alloy powders mixed with a molar ratio of Fe : P : C of 80 : 13 : 7 were sprayed on Q235 steel by plasma spray method to prepare coating with amorphous phases. The phase composition of the mixed alloy powders and prepared coating were characterized by X-ray diffraction ( XRD ). The morphology and the composition cf the coating were analyzed by scanning eleetron microscopy (SEM) nnd energy dispersive apectroscopy ( EDS ). In addition, the thermal stability ef the coating with amorphous phases was characterized by differential thermal analyzer ( DTA ). Tile results showed that, usirtg mixed alloy powders with a molar ratio of Fe: P: C of 80:13:7, the coating containing certain amount of amorphous alloys was suceessathlly prepared through atmospheric plasma spray technique. In the coating, the main phases were determined to be Fe, FeP aad Fe2P. The crystallization of the coating started from about 461°. Tile coating was mechanically adhered to the substrate.
文摘A gradient coating of Fe-based alloy was manufactured with rare earths (RE) by plasma surfacing on Q235 steel substrate. The coatings were studied by using X-ray diffraction(XRD), scanning electron microscope(SEM), differential thermal analyzer(DTA), and electron probe micro-analyzer (EPMA). The results show that the phases of the two kinds of coatings(with and without RE) both include α-Fe, Fe7C3, Fe3C, Cr2B, Fe2B and FeB. The microstructure of F314 coating is mainly hypereutectic, the pro-phases Cr7C3 and Cr2B are loose, crassi, spiculate and contain microcracks. The brittleness of the coating is high, and the average hardness is 787 HV. When 0.8wt% RE was added into the F314 alloy, the microstructure varied from hypoeutectic to hypereutectic continuously, The hardness appears as gradient distribution with the highest value of 773 HV, meanwhile, the brittleness decreases significantly. The formation of gradient structure depends on the fallowing factors: (i) the conversion of RE. The addition of RE lowers the elements point and Fe-C eutectic temperature, thus the base metal melting acutely. (ii) the heating of plasma arc. Graded temperature results in directional solidification, thus the gradient structure forms easily. The main reasons for the hardness decrease with RE addition in the alloy are the ratio of hard phase lowering and the hardness of the hard phase decreasing.
基金This research was supported by Jilin Province Science Foundation (No. 20090552).
文摘Al2O3p/Al composite coatings were prepared on the surface of AZ31 magnesium alloy by plasma spraying technology with mixed powders of Al and Al2O3. An orthogonal test containing six factors and five levels was carried out to acquire the optimum technical parameters. Mierostruetures and properties of the composite coatings were studied. The results show that the coatings consist of Al2O3 particulates distributed uniformly and Al matrix, and the interface between the particulate and matrix is continuous, compact and clean. With increasing the mass fraction of Al2O3 in the mixed powders, the volume fraction of Al2O3 in the coatings iacreases. The Al2O3p/Al composite coating with 14% Al2O3 volume fraction has more compact microstrueture and more satisfactory properties.
文摘The plasma sprayed thermal barrier coating (TBC) consists of NiCrAlY bond coating and yttria partially stabilized zirconia (YPSZ) top coating. NiCrAlY coating mainly contains Ni solid solution with face centered cubic lattice, Al_2O_3 oxides and pores. The most obvious feature of YPSZ coating with tetragonal zirconia is a lot of vertical microcracks in this coating. The thermal insulation capability of the TBC increased with an increase in YPSZ coating thickness, the temperature drop across the TBC increasing from 60℃ to 92℃ with increasing YPSZ coating thickness from 100 μm to 500 μm. The thermal shock resistance of the TBC decreased with increasing YPSZ coating thickness and cracks initiated mainly in original vertical microcrack tips of the YPSZ coating and propagated not only along YPSZ coating/ NiCrAlY coating interface but also through NiCrAlY coating. The oxidation process of the TBC at 1 200℃ can be divided into two stages: transient oxidation stage with rapid oxidation rate and steady oxidation stage with slow oxidation. Their transition time was about 10 hours. The weight gain for 100 hours was 3.222 mg/mm2. It is favorable to increase YPSZ coating toughness and to decrease the pores and oxides of the TBC system for improving thermal shock resistance and oxidation resistance of the TBC.
文摘Laser surface annealing provides a rapid and efficient means for surface alloying and modification of ceramic materials. In this study, Alumina-13% Titania coatings were sprayed with a water-stabilized plasma spray gun. The coated surface was treated by Excimer laser having a wavelength of 248 nm and pulse duration of 24 ns. The surface structure of the treated coating was examined by field emission scanning electron microscope and X-ray diffraction (XRD). A detailed analysis of the effects of various laser parameters including laser energy density (fluence), pulse repetition rate (PRR), and number of pulses on the morphology and the microstructure of the coatings are presented.
文摘在 Zr O2 - Ni Co Cr Al Y梯度涂层中 ,由基体到涂层表面 ,Zr O2 的含量逐渐增多 ,Ni Co Cr Al Y的含量逐渐减少 ,形成一种无宏观结合界面的成分连续变化的组织结构。随 Zr O2 组元含量的升高 ,Zr O2 - Ni Co Cr Al Y复合涂层的密度基本呈线性降低 ;涂层硬度则先降低后升高 ,含 6 0 vol% Zr O2 的复合涂层具有最低的硬度值 ;富含 Ni Co Cr Al Y组元的复合涂层的孔隙率略低。与双层涂层相比 ,成分梯度化的分布使梯度涂层的内聚强度和涂层与基体的结合强度都得到了明显地提高 ;涂层与基体的结合界面是梯度涂层