Plasma treatment has been known as an effective way to improve the surface bonding between the reinforcement material and the matrix, by modifying the surface morphology and the chemical composes of the material. In o...Plasma treatment has been known as an effective way to improve the surface bonding between the reinforcement material and the matrix, by modifying the surface morphology and the chemical composes of the material. In order to investigate the effects of atmospheric dielectric barrier discharge (DBD) plasma treatment on the surface properties of polyacrylonitrile-based (PAN-based) carbon fiber, atomic force microscope(AFM), X-ray photoelectron spectroscopy(XPS), and contact angle test were introduced to compare different treatment duration. The interfacial adhesion of carbon fiber/epoxy (CF/EP) composites were analyzed by a single fiber composite (SFC) for filament fragmentation test. And the tensile strength test and Weibull analysis were carried out to observe whether the etching could affect the strength. The results prove that the DBD plasma improves the surface properties of the carbon fiber. Further, when the treatment time was around 90 s, the roughness and oxygen containing group of the carbon fiber reached the peak values. Also, the fiber showed the best adhesion to the polymer in contact angle test and the optimum interfacial shear strength (IFSS) in fragmentation test. The Weibull analyses of the tensile data revealed no substantial changes in the tensile strength within the treatment time of 180 s.展开更多
Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer...Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H202 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.展开更多
The surface properties of PAN-based carbon fibers electrochemically treated in aqueous ammonium bicarbonate before and after treatment were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microsc...The surface properties of PAN-based carbon fibers electrochemically treated in aqueous ammonium bicarbonate before and after treatment were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Dynamic Contact Angle Analysis (DCAA). The results of characterization indicated that the oxygen and nitrogen contents in carbon fiber surface were significantly increased by electrochemical treatment, and amide groups was introduced onto it, which was related with the electrolyte. The AFM photographs illustrated that the roughness of the fiber surface was also increased. The wettibality of the fibers was improved after treatment because the surface energy especially the polar part of it was increased.展开更多
Electrodeposition technique was used to coat calcium phosphate on carbon fiber which can be used to reinforce hydroxyapatite. The differences between fibers treated with and without nitric acid in electrodeposition we...Electrodeposition technique was used to coat calcium phosphate on carbon fiber which can be used to reinforce hydroxyapatite. The differences between fibers treated with and without nitric acid in electrodeposition were evaluated. The X-ray diffractometry results show that CaHPO4·2H2O is obtained as the kind of calcium phosphate coating on carbon fiber. The scanning electron microscopy photographs and deposit kinetic curve indicate that the influences of the functional group attained by nitric acid treatment, the crystal morphology and crystallization of the coating layers on the fiber with and without treatment rate are obviously different. The functional group, especially the acidic group, can act as nucleation centers of electrochemical crystallization.展开更多
Viscose-based activated carbon fibers (VACFs) were treated by a dielectric-barrier discharge plasma under the feed gas of N2. The surface functional groups of VACFs were modified to improve the adsorption and cataly...Viscose-based activated carbon fibers (VACFs) were treated by a dielectric-barrier discharge plasma under the feed gas of N2. The surface functional groups of VACFs were modified to improve the adsorption and catalysis capacity for SO2. The surface properties of the untreated and plasma-treated VACFs were diagnosed by SEM, BET, FTIR, and XPS, and the adsorption capacities of VACFs for SO2 were also compared and discussed. The results show that after the plasma treatment, the external surface of VACFs was etched and became rougher, while the surface area and the total pore volume decreased. FTIR and XPS revealed that nitrogen atoms were introduced onto the VACFs surface and the distribution of functional groups on the VACFs surface was changed remarkably. The adsorption characteristic of SO2 indicates that the plasmatreated VACFs have better adsorption capacity than the original VACFs due to the nitrogen functional groups and new functional groups formed in modification, which is beneficial to the adsorption of SO2.展开更多
Functionalized multi-walled carbon nanotubes( fMWNTs) were prepared with chitosan via controlled surface deposition and crosslinking process and scanning electron microscopy( SEM),Fourier translation infrared spectros...Functionalized multi-walled carbon nanotubes( fMWNTs) were prepared with chitosan via controlled surface deposition and crosslinking process and scanning electron microscopy( SEM),Fourier translation infrared spectroscopy( FT-IR) and Xray diffraction( XRD) are used to character properties. A novel high-density chitosan( HCS) was dissolved in f-MWNTs dispersed dilute acetic acid with a maximal concentration of 5. 8%. The hollow fibers can be made by extruding the solution into a dilute alkali solution through a wet-spinning process and the tensile properties of the materials were evaluated by universal tester. The surface property of fibers,pretreated by Helium( He) and the following grafted with gelatin was evaluated with X-ray photoelectron spectroscopy( XPS).As the hollow fibers were intended for neural tissue engineering,its suitability was evaluated in vitro using rat Schwann cells( RSC96) as model cells. The cells attachment,proliferation and morphology,were studied by various microscopic techniques. Based on the results,the gelatin grafted HCS / f-MWNTs hollow fibers could be used as a potential cell carrier in neural tissue engineering.展开更多
The composites obtained from carbon fibers have poor interlaminar shear strength beacuse ofthe few active polar groups on the carbon fiber surface and the weak bonding between the carbonfiber and the resin matrix. An ...The composites obtained from carbon fibers have poor interlaminar shear strength beacuse ofthe few active polar groups on the carbon fiber surface and the weak bonding between the carbonfiber and the resin matrix. An electrolysis study to increase the surface acidic groups of the carbonfiber was investigated in this paper. Experimental results showed that the surface acidic groups,tensile strength, peeling strength of the carbon fabrics increased under certain electrolytic condi-tions, but the breaking elongations decreased. When the electrolytic conditions were too strong,tensile strength and peeling strength dropped down. Electronic scanning micrographs showed theengraved surfaces of carbon fibers after electrolysis.展开更多
The development of surface acidity on rayon-based carbon fibers during mild electrochemical treatment was investigated. Conductimetric titration was the primary method used to investigate the functionalities on the ca...The development of surface acidity on rayon-based carbon fibers during mild electrochemical treatment was investigated. Conductimetric titration was the primary method used to investigate the functionalities on the carbon fiber surface. The acidity on the surface of the untreated carbon fiber was very low, while for the treated fibers, the acidity increased significantly.Moreover, with the treatment extent proceeded, the acidity on the fiber surface also increased. SEM analysis shows electrochemical treatment under intense treatment degree caused considerable etch on the fiber surface.Cavities and grooves can be observed on the surface via the SEM microphotograph. While in a more mild treatment, electrochemical treatment didn't cause great etch on the surface of the fiber.展开更多
Biopolymer fibers have great potential for technical applications in biomaterials.The surface properties of fibers are of importance in these applications.In this study,electrospun poly(L-lactide)(PLLA)/poly(ε-caprol...Biopolymer fibers have great potential for technical applications in biomaterials.The surface properties of fibers are of importance in these applications.In this study,electrospun poly(L-lactide)(PLLA)/poly(ε-caprolactone)(PCL)membranes were modified by cold plasma treatment and coating gelatin to improve the surface hydrophilic properties.The morphologies of the fibers were observed by scanning electron microscopy(SEM).Atomic force microscopy(AFM)was employed to show the surface characteristics of the fibers.The chemical feature of the fibrous membrane surfaces was examined by X-ray photoelectron spectroscopy(XPS).The surface wettability of the fibrous membrane was also characterized by water contact angle measurements.All these results show that plasma treatment can have profound effects on the surface properties of fibrous membranes by changing their surface physical and chemical features.Gelatin-PLLA/PCL membrane has great potential in applications of tissue engineering scaffolds.展开更多
Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroeth...Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites was invest/gated. Experimental results revealed that RE was superior to air ox/dation in improving the tensile strength, elongation, and the tensile modulus of CF reinforced PTFE (CF/PTFE) composite. Compared to the untreated and air-oxidated CF/PTFE composite, the RE treated composite had the lowest friction coefficient and specific wear rate under a given applied load and reciprocating sliding frequency. The RE treatment effectively improved the interfacial adhesion between CF and PTFE. With strong interfacial coupling, the carbon fibers carried most of the load, and direct contact and adhesion between PTFE and the counterpart were reduced, accordingly the friction and wear properties of the composite were improved.展开更多
Combined nitric acid oxidation method and polyaniline (PANI)-coated method were applied to modify the surface properties of short carbon fibers (SCF). The electrical and mechanical properties of acrylic coatings w...Combined nitric acid oxidation method and polyaniline (PANI)-coated method were applied to modify the surface properties of short carbon fibers (SCF). The electrical and mechanical properties of acrylic coatings with 50 wt pct PANI-coated carbon fiber were investigated by using scanning electron microscope (SEM), UV-Vis spectrophotometer, four-probe method and the coaxial cable method. The results of the pH measurement and XPS (X-ray photoelectron spectroscopy) patterns showed that the oxygen functional groups, such as -OH and -COOH, were attached on the carbon fiber surfaces after oxidation treatment. The XPS analysis of PANl-coated oxidized SCF (PAOSCF) revealed that PANI may bond on the surface of oxidized SCF with chemical bonds. SEM images and surface roughness analyses showed that PANl-coated layer changed the surface morphology. Compared with SCF/acrylic coating, the surface resistivity of PAOSCF/acrylic coating decreased from17.1 to 5.3 Ω/sq and the shielding efficiency (SE) value increased from 1.54 to 23.3 dB.展开更多
Cold plasma technology was used to treat the surface of carbon fibers braided by PET in this paper and SEM was used to analyze the fracture microstructure of composite interlaminar shear stress (ILSS). The result show...Cold plasma technology was used to treat the surface of carbon fibers braided by PET in this paper and SEM was used to analyze the fracture microstructure of composite interlaminar shear stress (ILSS). The result shows that the surface polarity of carbon fibers was modified by cold plasma treatment, which increases the impregnation of PET braided carbon fibers during the process of resin flowing, improves the interfacial properties of RTM composites, and therefore enhances the mechanical properties of the KTM composites.展开更多
Tribological properties of polytetrafluoroethylene (PTFE) composites filled with differently surface treated carbon fibers (CF), sliding against GCr15 steel under dry sliding conditions, were investigated on a blo...Tribological properties of polytetrafluoroethylene (PTFE) composites filled with differently surface treated carbon fibers (CF), sliding against GCr15 steel under dry sliding conditions, were investigated on a block-on-ring M-2000 tribometer. Experimental results reveal that rare earths (RE) surface treatment reduces the friction and wear of CF-reinforced PTFE (CF/PTFE) composites. Scanning electron microscopy (SEM) investigation of worn surfaces of CF/PTFE composites shows that cracks or pores are visible on the worn surfaces of untreated and air-oxidated composite, while no crack and very few pores present on the worn surface of RE- treated composite. The fiber-friction-angling effect makes carbon fibers angled and oriented along the frictional shearing force, and finally parallel to the friction surface, which makes interracial adhesion become a key factor to tribological properties of CF/PTFE composite. With strong interfacial adhesion between carbon fiber and PTFE after RE surface treatment, carbon fibers are not easily detachable from the PTFE matrix in the process of fiber-friction-angling, which prevents the rubbing-off of PTFE, and accordingly improves the friction and wear properties of the composite.展开更多
Non-thermal plasma(NTP)surface modification technology is a new method to control the surface properties of materials,which has been widely used in the field of environmental protection because of its short action tim...Non-thermal plasma(NTP)surface modification technology is a new method to control the surface properties of materials,which has been widely used in the field of environmental protection because of its short action time,simple process and no pollution.In this study,Cu/ACF(activated carbon fiber loaded with copper)adsorbent was modified with NTP to remove H_(2)S and PH_(3) simultaneously under low temperature and micro-oxygen condition.Meanwhile,the effects of different modified atmosphere(air,N_(2) and NH_(3)),specific energy input(0–13 J/mL)and modification time(0–30 min)on the removal of H_(2)S and PH_(3) were investigated.Performance test results indicated that under the same reaction conditions,the adsorbent modified by NH_(3) plasma with 5 J/mL for 10 min had the best removal effect on H_(2)S and PH_(3).CO_(2) temperature-programmed desorption and X-ray photoelectron spectroscopy(XPS)analyzes showed that NH_(3) plasma modification could introduce amino functional groups on the surface of the adsorbent,and increase the types and number of alkaline sites on the surface.Brunauer-Emmett-Teller and scanning electron microscopy showed that NH_(3) plasma modification did not significantly change the pore size structure of the adsorbent,but more active components were evenly exposed to the surface,thus improving the adsorption performance.In addition,X-ray diffraction and XPS analysis indicated that the consumption of active components(Cu and Cu_(2)O)and the accumulation of sulfate and phosphate on the surface and inner pores of the adsorbent are the main reasons for the deactivation of the adsorbent.展开更多
基金the Key Laboratory Fundings of Science and Technology Commission of Shanghai Municipality,China(No. 10521100404,No.10JC1400400)Foundation of Key Laboratory of Textile Science & Technology,Ministry of Education of China(No. 11D10114)
文摘Plasma treatment has been known as an effective way to improve the surface bonding between the reinforcement material and the matrix, by modifying the surface morphology and the chemical composes of the material. In order to investigate the effects of atmospheric dielectric barrier discharge (DBD) plasma treatment on the surface properties of polyacrylonitrile-based (PAN-based) carbon fiber, atomic force microscope(AFM), X-ray photoelectron spectroscopy(XPS), and contact angle test were introduced to compare different treatment duration. The interfacial adhesion of carbon fiber/epoxy (CF/EP) composites were analyzed by a single fiber composite (SFC) for filament fragmentation test. And the tensile strength test and Weibull analysis were carried out to observe whether the etching could affect the strength. The results prove that the DBD plasma improves the surface properties of the carbon fiber. Further, when the treatment time was around 90 s, the roughness and oxygen containing group of the carbon fiber reached the peak values. Also, the fiber showed the best adhesion to the polymer in contact angle test and the optimum interfacial shear strength (IFSS) in fragmentation test. The Weibull analyses of the tensile data revealed no substantial changes in the tensile strength within the treatment time of 180 s.
基金National Natural Science Foundation of China(Nos.20576079,20776159)
文摘Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H202 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.
基金Sponsored by the Scientific Research Foundation of Harbin Institute of Technology(Grant No. HIT. 2003.57)
文摘The surface properties of PAN-based carbon fibers electrochemically treated in aqueous ammonium bicarbonate before and after treatment were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Dynamic Contact Angle Analysis (DCAA). The results of characterization indicated that the oxygen and nitrogen contents in carbon fiber surface were significantly increased by electrochemical treatment, and amide groups was introduced onto it, which was related with the electrolyte. The AFM photographs illustrated that the roughness of the fiber surface was also increased. The wettibality of the fibers was improved after treatment because the surface energy especially the polar part of it was increased.
基金Project (2003AA302210) supported by the National High Technology Research and Development Program of Chinaproject(04JJ3083) supported by the Elite Foundation of Hunan Province+1 种基金 China project (030615) supported by the Innovation Pro
文摘Electrodeposition technique was used to coat calcium phosphate on carbon fiber which can be used to reinforce hydroxyapatite. The differences between fibers treated with and without nitric acid in electrodeposition were evaluated. The X-ray diffractometry results show that CaHPO4·2H2O is obtained as the kind of calcium phosphate coating on carbon fiber. The scanning electron microscopy photographs and deposit kinetic curve indicate that the influences of the functional group attained by nitric acid treatment, the crystal morphology and crystallization of the coating layers on the fiber with and without treatment rate are obviously different. The functional group, especially the acidic group, can act as nucleation centers of electrochemical crystallization.
基金supported by National Natural Science Foundation of China(No.50876077)
文摘Viscose-based activated carbon fibers (VACFs) were treated by a dielectric-barrier discharge plasma under the feed gas of N2. The surface functional groups of VACFs were modified to improve the adsorption and catalysis capacity for SO2. The surface properties of the untreated and plasma-treated VACFs were diagnosed by SEM, BET, FTIR, and XPS, and the adsorption capacities of VACFs for SO2 were also compared and discussed. The results show that after the plasma treatment, the external surface of VACFs was etched and became rougher, while the surface area and the total pore volume decreased. FTIR and XPS revealed that nitrogen atoms were introduced onto the VACFs surface and the distribution of functional groups on the VACFs surface was changed remarkably. The adsorption characteristic of SO2 indicates that the plasmatreated VACFs have better adsorption capacity than the original VACFs due to the nitrogen functional groups and new functional groups formed in modification, which is beneficial to the adsorption of SO2.
基金State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,China(No.LZ0902)Shanghai Science and Technical Committee,China(No.12DZ194030)
文摘Functionalized multi-walled carbon nanotubes( fMWNTs) were prepared with chitosan via controlled surface deposition and crosslinking process and scanning electron microscopy( SEM),Fourier translation infrared spectroscopy( FT-IR) and Xray diffraction( XRD) are used to character properties. A novel high-density chitosan( HCS) was dissolved in f-MWNTs dispersed dilute acetic acid with a maximal concentration of 5. 8%. The hollow fibers can be made by extruding the solution into a dilute alkali solution through a wet-spinning process and the tensile properties of the materials were evaluated by universal tester. The surface property of fibers,pretreated by Helium( He) and the following grafted with gelatin was evaluated with X-ray photoelectron spectroscopy( XPS).As the hollow fibers were intended for neural tissue engineering,its suitability was evaluated in vitro using rat Schwann cells( RSC96) as model cells. The cells attachment,proliferation and morphology,were studied by various microscopic techniques. Based on the results,the gelatin grafted HCS / f-MWNTs hollow fibers could be used as a potential cell carrier in neural tissue engineering.
基金This paper was presented to Sino-Japan Symposium on Dyeing Finishing on October 7, 1990 at China Textile University
文摘The composites obtained from carbon fibers have poor interlaminar shear strength beacuse ofthe few active polar groups on the carbon fiber surface and the weak bonding between the carbonfiber and the resin matrix. An electrolysis study to increase the surface acidic groups of the carbonfiber was investigated in this paper. Experimental results showed that the surface acidic groups,tensile strength, peeling strength of the carbon fabrics increased under certain electrolytic condi-tions, but the breaking elongations decreased. When the electrolytic conditions were too strong,tensile strength and peeling strength dropped down. Electronic scanning micrographs showed theengraved surfaces of carbon fibers after electrolysis.
文摘The development of surface acidity on rayon-based carbon fibers during mild electrochemical treatment was investigated. Conductimetric titration was the primary method used to investigate the functionalities on the carbon fiber surface. The acidity on the surface of the untreated carbon fiber was very low, while for the treated fibers, the acidity increased significantly.Moreover, with the treatment extent proceeded, the acidity on the fiber surface also increased. SEM analysis shows electrochemical treatment under intense treatment degree caused considerable etch on the fiber surface.Cavities and grooves can be observed on the surface via the SEM microphotograph. While in a more mild treatment, electrochemical treatment didn't cause great etch on the surface of the fiber.
基金National Demonstration Center for Experimental Materials Science and Engineering Education(Donghua University),China。
文摘Biopolymer fibers have great potential for technical applications in biomaterials.The surface properties of fibers are of importance in these applications.In this study,electrospun poly(L-lactide)(PLLA)/poly(ε-caprolactone)(PCL)membranes were modified by cold plasma treatment and coating gelatin to improve the surface hydrophilic properties.The morphologies of the fibers were observed by scanning electron microscopy(SEM).Atomic force microscopy(AFM)was employed to show the surface characteristics of the fibers.The chemical feature of the fibrous membrane surfaces was examined by X-ray photoelectron spectroscopy(XPS).The surface wettability of the fibrous membrane was also characterized by water contact angle measurements.All these results show that plasma treatment can have profound effects on the surface properties of fibrous membranes by changing their surface physical and chemical features.Gelatin-PLLA/PCL membrane has great potential in applications of tissue engineering scaffolds.
基金Project supported by the National Natural Science Foundation of China (50275093)
文摘Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites was invest/gated. Experimental results revealed that RE was superior to air ox/dation in improving the tensile strength, elongation, and the tensile modulus of CF reinforced PTFE (CF/PTFE) composite. Compared to the untreated and air-oxidated CF/PTFE composite, the RE treated composite had the lowest friction coefficient and specific wear rate under a given applied load and reciprocating sliding frequency. The RE treatment effectively improved the interfacial adhesion between CF and PTFE. With strong interfacial coupling, the carbon fibers carried most of the load, and direct contact and adhesion between PTFE and the counterpart were reduced, accordingly the friction and wear properties of the composite were improved.
文摘Combined nitric acid oxidation method and polyaniline (PANI)-coated method were applied to modify the surface properties of short carbon fibers (SCF). The electrical and mechanical properties of acrylic coatings with 50 wt pct PANI-coated carbon fiber were investigated by using scanning electron microscope (SEM), UV-Vis spectrophotometer, four-probe method and the coaxial cable method. The results of the pH measurement and XPS (X-ray photoelectron spectroscopy) patterns showed that the oxygen functional groups, such as -OH and -COOH, were attached on the carbon fiber surfaces after oxidation treatment. The XPS analysis of PANl-coated oxidized SCF (PAOSCF) revealed that PANI may bond on the surface of oxidized SCF with chemical bonds. SEM images and surface roughness analyses showed that PANl-coated layer changed the surface morphology. Compared with SCF/acrylic coating, the surface resistivity of PAOSCF/acrylic coating decreased from17.1 to 5.3 Ω/sq and the shielding efficiency (SE) value increased from 1.54 to 23.3 dB.
文摘Cold plasma technology was used to treat the surface of carbon fibers braided by PET in this paper and SEM was used to analyze the fracture microstructure of composite interlaminar shear stress (ILSS). The result shows that the surface polarity of carbon fibers was modified by cold plasma treatment, which increases the impregnation of PET braided carbon fibers during the process of resin flowing, improves the interfacial properties of RTM composites, and therefore enhances the mechanical properties of the KTM composites.
基金the National Natural Science Foundation of China (No.50275093)
文摘Tribological properties of polytetrafluoroethylene (PTFE) composites filled with differently surface treated carbon fibers (CF), sliding against GCr15 steel under dry sliding conditions, were investigated on a block-on-ring M-2000 tribometer. Experimental results reveal that rare earths (RE) surface treatment reduces the friction and wear of CF-reinforced PTFE (CF/PTFE) composites. Scanning electron microscopy (SEM) investigation of worn surfaces of CF/PTFE composites shows that cracks or pores are visible on the worn surfaces of untreated and air-oxidated composite, while no crack and very few pores present on the worn surface of RE- treated composite. The fiber-friction-angling effect makes carbon fibers angled and oriented along the frictional shearing force, and finally parallel to the friction surface, which makes interracial adhesion become a key factor to tribological properties of CF/PTFE composite. With strong interfacial adhesion between carbon fiber and PTFE after RE surface treatment, carbon fibers are not easily detachable from the PTFE matrix in the process of fiber-friction-angling, which prevents the rubbing-off of PTFE, and accordingly improves the friction and wear properties of the composite.
基金funding for this study received from the Fundamental Research Funds for the National Natural Science Foundation of China(Nos.21876071,51968034,41807373 and 21667015)Science and Technology Program of Yunnan province(No.2019FB069).
文摘Non-thermal plasma(NTP)surface modification technology is a new method to control the surface properties of materials,which has been widely used in the field of environmental protection because of its short action time,simple process and no pollution.In this study,Cu/ACF(activated carbon fiber loaded with copper)adsorbent was modified with NTP to remove H_(2)S and PH_(3) simultaneously under low temperature and micro-oxygen condition.Meanwhile,the effects of different modified atmosphere(air,N_(2) and NH_(3)),specific energy input(0–13 J/mL)and modification time(0–30 min)on the removal of H_(2)S and PH_(3) were investigated.Performance test results indicated that under the same reaction conditions,the adsorbent modified by NH_(3) plasma with 5 J/mL for 10 min had the best removal effect on H_(2)S and PH_(3).CO_(2) temperature-programmed desorption and X-ray photoelectron spectroscopy(XPS)analyzes showed that NH_(3) plasma modification could introduce amino functional groups on the surface of the adsorbent,and increase the types and number of alkaline sites on the surface.Brunauer-Emmett-Teller and scanning electron microscopy showed that NH_(3) plasma modification did not significantly change the pore size structure of the adsorbent,but more active components were evenly exposed to the surface,thus improving the adsorption performance.In addition,X-ray diffraction and XPS analysis indicated that the consumption of active components(Cu and Cu_(2)O)and the accumulation of sulfate and phosphate on the surface and inner pores of the adsorbent are the main reasons for the deactivation of the adsorbent.