In this work, a magnetic fluid dynamics (MHD) model is used to simulate the electromagnetic field, heat transfer and fluid flow in a DC non-transferred arc plasma torch under laminar and turbulent conditions. The el...In this work, a magnetic fluid dynamics (MHD) model is used to simulate the electromagnetic field, heat transfer and fluid flow in a DC non-transferred arc plasma torch under laminar and turbulent conditions. The electric current density, temperature and velocity distributions in the torch are obtained through the coupled iterative calculation about the electromagnetic equations described in a magnetic vector potential format and the modified fluid dynamics equations. The fluid-solid coupled calculation method is applied to guarantee the continuity of the electric current and heat transfer at the interface between the electrodes and fluid. The predicted location of the anodic arc root attachment and the arc voltage of the torch are consistent with corresponding experimental results. Through a specific analysis of the influence of mass flow rates and electric current on the torch outlet parameters, the total thermal efficiency, thermal loss of each part, and the laws of the variation of outlet parameters with the variation of mass flow rates and electric current was obtained. It is found that operation under a laminar condition with a limited area of the anode could increase the total thermal efficiency of the torch.展开更多
Dependence of the current-voltage characteristics of a non-transferred DC cascaded plasma torch used for nanoparticle synthesis, on the plasma current and the plasma argon gas flow rate are reported in this paper. The...Dependence of the current-voltage characteristics of a non-transferred DC cascaded plasma torch used for nanoparticle synthesis, on the plasma current and the plasma argon gas flow rate are reported in this paper. The potential structure inside the torch and its dependence on the plasma current and gas flow rate are also investigated. The arc voltage is seen to exhibit negative characteristic for a current below 150 A and positive characteristic above that current value. The voltage drop near the electrodes is found to decrease with the increase in plasma current. 25~ of the total voltage is dropped near the cathode at a plasma current of 50 A and a argon plasma gas flow rate of 10 liter per minute (LPM), and it decreases to 12% with the current increasing to 300 A, and to 17% with a gas flow rate of 25 LPM. The variation in the torch efficiency with the gas flow rate and plasma current is also reported. The efficiency of the torch is found to be between 36% and 48%. In addition, the plasma gas temperature at various positions of the reactor and for different currents and voltages are measured by calorimetric estimation with a heat balance technique.展开更多
Excitation( Texc ) and rotation( Trot ) temperatures were determined under different conditions for an oxygen-shielded argon microwave plasmsa torch source(OS-Ar-MPT). The Texc value, which was shown to be betwe...Excitation( Texc ) and rotation( Trot ) temperatures were determined under different conditions for an oxygen-shielded argon microwave plasmsa torch source(OS-Ar-MPT). The Texc value, which was shown to be between 4300 and 5250 K under different operating conditions, was calculated from the slope of the Boltzmann plot with Fe as the thermometric species. The Trot value, which was in the range of 2100-2500 K, was measured with OH molecular spectra. The influences of microwave power, flow rates of the support gas, cartier gas, and shielding gas, as well as the observation height on Texc and Trot were investigated and discussed. The detailed results of Texc and Trot provided a better understanding of the performance of an OS-ArMPT as a source for atomic emission spectrometry.展开更多
Based on two typical laminar plasma torches (LPT), i.e. a multi-electrode plasma torch (MEPT) with segmented anode structure and a two-electrode plasma torch (TEPT) with conventional structure, this paper studie...Based on two typical laminar plasma torches (LPT), i.e. a multi-electrode plasma torch (MEPT) with segmented anode structure and a two-electrode plasma torch (TEPT) with conventional structure, this paper studied the influence of the LPTs construction on the jet characteristics. Experiments were designed to measure their arc voltage, jet length, thermal efficiency and specific enthalpy using a home-made data acquisition system. With them, the jet characteristics of the two different LPTs were compared in detail. Results show that different plasma torch construction leads to distinctively different characteristics of the generated plasma jet. Based on the different jet characteristics, a plasma torch with appropriate construction could be used to meet the different application requirements.展开更多
Direct current plasma torches have been applied to generate unique sources of thermal energy in many industrial applications. Nevertheless, the successful ignition of a plasma torch is the key process to generate the ...Direct current plasma torches have been applied to generate unique sources of thermal energy in many industrial applications. Nevertheless, the successful ignition of a plasma torch is the key process to generate the unique source (plasma jet). However, there has been tittle study on the underlying mechanism of this key process. A thorough understanding of the ignition process of a plasma torch will be helpful for optimizing the design of the plasma torch structure and selection of the ignition parameters to prolong the service life of the ignition module. Thus, in this paper, the ignition process of a segmented plasma torch (SPT) is theoretically and experimentally modeled and analyzed. Corresponding electrical models of different stages of the ignition process axe set up and used to derive the electrical parameters, e.g. the variations of the arc voltage and arc current between the cathode and anode. In addition, the experiments with different ignition parameters on a home-made SPT have been conducted. At the same time, the variations of the arc voltage and arc current have been measured, and used to verify the ones derived in theory and to determine the optimal ignition parameters for a particular SPT.展开更多
Five turbulence models of Reynolds average Navier-Stokes(RANS),including the standard k-ω model,the RNG k-e model taking into account the low Reynolds number effect,the realizable k-ω model,the SST k-ω model,and th...Five turbulence models of Reynolds average Navier-Stokes(RANS),including the standard k-ω model,the RNG k-e model taking into account the low Reynolds number effect,the realizable k-ω model,the SST k-ω model,and the Reynolds stress model(RSM),are employed in the numerical simulations of direct current(DC)arc plasma torches in the range of arc current from 80 A to 240 A and air gas flow rate from 10 m^3 h^-1 to 50 m^3 h^-1.The calculated voltage,electric field intensity,and the heat loss in the arc chamber are compared with the experiments.The results indicate that the arc voltage,the electric field,and the heat loss in the arc chamber calculated by using the standard k-ω model,the RNG k-ωmodel taking into account the low Reynolds number effect,and the realizable k-ω model are much larger than those in the experiments.The RSM predicts relatively close results to the experiments,but fails in the trend of heat loss varying with the gas flow rate.The calculated results of the SST k-ω model are in the best agreement with the experiments,which may be attributed to the reasonable predictions of the turbulence as well as its distribution.展开更多
Thermal plasma was applied for the treatment of coke wastewater sludge derived from the steel industry in order to investigate the feasibility of the safe treatment and energy recovery of the sludge. A 30 kW plasma to...Thermal plasma was applied for the treatment of coke wastewater sludge derived from the steel industry in order to investigate the feasibility of the safe treatment and energy recovery of the sludge. A 30 kW plasma torch system was applied to study the vitrification and gas production of coke wastewater sludge. Toxicity leaching results indicated that the sludge treated via the thermal plasma process converted into a vitrified slag which resisted the leaching of heavy metals. CO2 was utilized as working gas to study the production and heat energy of the syngas. The heating value of the gas products by thermal plasma achieved 8.43 k J/L, indicating the further utilization of the gas products. Considering the utilization of the syngas and recovery heat from the gas products, the estimated treatment cost of coke wastewater sludge via plasma torch was about 0.98 CNY/kg sludge in the experiment. By preliminary economic analysis, the dehydration cost takes an important part of the total sludge treatment cost. The treatment cost of the coke wastewater sludge with 50 wt.% moisture was calculated to be about 1.45 CNY/kg sludge dry basis. The treatment cost of the coke wastewater sludge could be effectively controlled by decreasing the water content of the sludge. These findings suggest that an economic dewatering pretreatment method could be combined to cut the total treatment cost in an actual treatment process.展开更多
A microwave plasma torch (MPT) simultaneous spectrometer was used to study the spectral character and the matrix effect on alkali metal ions in solution. The main parameters were optimized. The microwave forward pow...A microwave plasma torch (MPT) simultaneous spectrometer was used to study the spectral character and the matrix effect on alkali metal ions in solution. The main parameters were optimized. The microwave forward power was 100 W. The argon flow rate that was used to sustain the Ar-MPT included the flow rate of carrier gas and the flow rate of support gas, which were 0. 8 and 1.0 L/min, respectively. The HC1 concentration in the solution was 0.02 mol/L. The observation height was 9. 0 ram. The detection limits of Li, Na, K, Rb, and Cs were 0. 0003, 0. 0004, 0. 009, 0.07 and 2.4 mg/L, respectively, and the resuhs obtained by the Ar-MPT were compared with those obtained by argon inductively coupled plasma(Ar-ICP) and argon microwave induced plasma(Ar-MIP). The interference effects of several matrix elements were also studied.展开更多
Thermal steam plasma jet is promising for applications in environmental industries due to its distinctive characteristics of high enthalpy and high chemical reactivity. However, the performance of the steam plasma tor...Thermal steam plasma jet is promising for applications in environmental industries due to its distinctive characteristics of high enthalpy and high chemical reactivity. However, the performance of the steam plasma torch for its generation is limited by the problems of the large arc voltage fluctuation and serious erosion of the electrodes. In this study, a gas-stabilized steam plasma torch which can operate continuously and stably was designed. Experiments were conducted to reveal the effect of the different working parameters, including the anode diameter, the cooling water temperature, the arc current and the steam flow rate, on its Volt-Ampere characteristics, arc voltage fluctuation, thermal efficiency, jet characteristics and electrodes erosion. Results showed that the use of hot water to cool the electrodes can effectively prevent the condensation of steam on the inner wall of the electrodes, thus significantly reducing the arc voltage fluctuations and electrodes erosion. This is crucial for increasing the working life of the electrodes and ensuring long-term stability of the steam plasma torch. In addition, suitable anode diameter can greatly reduce the arc voltage fluctuation of the steam plasma torch and effectively improve the stability of the steam plasma jet. Furthermore, high arc current can effectively reduce the fluctuations of the arc voltage and increase the length and the volume of the steam plasma jet. Finally, using steam as the plasma forming gas can achieve higher thermal efficiency compared to air. An ideal thermal efficiency can be achieved by properly reducing the arc current and increasing the steam flow rate.展开更多
This study was carried out to investigate the possibility of titanium alloy metal powder production using low-power plasma torches.An argon DC non-transferred arc plasma torch was designed,and numerical analysis was c...This study was carried out to investigate the possibility of titanium alloy metal powder production using low-power plasma torches.An argon DC non-transferred arc plasma torch was designed,and numerical analysis was conducted to determine the plasma jet properties and wire temperature.The highest velocities inside the nozzle attachment were between 838 and 1178 m/s.The velocities of the jets at the apex were between 494 and 645 m/s for different gas flow rates.The studied plasma gas flow rates had no significant effect on the effective plasma jet length.It was shown that the plasma jet length can be estimated by numerical analysis using the temperature and velocity changes of the plasma jet over distance.It was observed that the powders produced were spherical without any satellites.As a result of this study,a plasma torch was developed and powder production was performed successfully by using relatively low torch power.展开更多
Arc plasma torch is an effective tool for spheroidization of metallic powders.However,as most conventional plasma torches were not specifically designed for plasma spheroidization,they may exhibit the disadvantages of...Arc plasma torch is an effective tool for spheroidization of metallic powders.However,as most conventional plasma torches were not specifically designed for plasma spheroidization,they may exhibit the disadvantages of the radial injection of powders,large fluctuations in the arc voltage,large gas flow rate,and disequilibrium between multiple plasma jets during the spheroidization process.Therefore,this paper presents a triple-cathode cascade plasma torch(TCCPT)for plasma spheroidization.Its structural design,including three cathodes,a common anode,and three sets of inter-electrodes,are detailed to ensure that powders can be inserted into the plasma jet by axial injection,the arc voltage fluctuations are easily maintained at a low level,and the plasma torches can work at a relatively small gas flow rate.Experimental results showed that the proposed TCCPT exhibits the following characteristics:(1)a relatively small arc voltage fluctuation within 5.3%;(2)a relatively high arc voltage of 75 V and low gas flow rate range of10-30 SLM;(3)easy to be maintained at the equilibrium state with the equilibrium index of the three plasma jets within 3.5 V.Furthermore,plasma spheroidization experiments of SUS304 stainless steel powers were carried out using the proposed TCCPT.Results verified that the proposed TCCPT is applicable and effective for the spheroidization of metallic powders with wide size distribution.展开更多
Laminar plasma jet(LPJ)generated by laminar plasma torch(LPT)has a favorable temperature and velocity distribution.Thus,it is superior to the turbulent plasma jet in material processing.However,most of the reported LP...Laminar plasma jet(LPJ)generated by laminar plasma torch(LPT)has a favorable temperature and velocity distribution.Thus,it is superior to the turbulent plasma jet in material processing.However,most of the reported LPTs usually operate at a relatively low output power with a relatively low arc voltage and thermal efficiency,which limits its capabilities.In this context,this paper attempts to design a new type of high-power LPT with a relatively low arc current and a high thermal efficiency.In the first section,the design principle of the main components is studied and discussed in detail,and a new high-power LPT is proposed.Then,the experimental characteristics of the proposed high-power LPT are examined.Experimental results reveal the following characteristics of the proposed LPT.(1)The max jet length of the proposed LPT reaches at 540 mm.(2)Its mean arc voltage is higher than 290 V when the LPT works with arc currents lower than 200 A.leading to an output power greater than 50 kW.(3)The mean thermal efficiency is higher than 509f.Lastly,the proposed LPT has been applied to spheroidize the aluminum oxide powers.The experiment results for the production of spherical powders show that the proposed LPT hits a good characteristic for material processing.展开更多
A new automatic sample solution introduction system for miniature simultaneous microwave plasma torch(MPT) atomic emission spectrometer was developed. The operating parameters were optimized. The detection limits of...A new automatic sample solution introduction system for miniature simultaneous microwave plasma torch(MPT) atomic emission spectrometer was developed. The operating parameters were optimized. The detection limits of the spectrometer with an ultrasonic nebulizer for Ag, Al, Ba, Ca, Cr, Cu, Fe, Mg, Mn, Sr, and V are 5-10 times lower than those obtained with a pneumatic nebulizer and are also lower than those obtained by a Model JX-lOlO MPT spectrometer. Two practical samples were analyzed to test the reliability and sensitivity of the system.展开更多
An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system.In this method, a new sliding surface is defined based on a combination of the conventional sliding ...An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system.In this method, a new sliding surface is defined based on a combination of the conventional sliding surface in terminal sliding mode control and a nonlinear function of the integral of the system states. It is assumed that the dynamics of a chaotic system are unknown and also the system is exposed to disturbance and unstructured uncertainty. To achieve a chattering-free and high-speed response for such an unknown system, an adaptive neuro-fuzzy inference system is utilized in the next step to approximate the unknown part of the nonlinear dynamics. Then, the proposed integral terminal sliding mode controller stabilizes the approximated system based on Lyapunov's stability theory. In addition, a Bee algorithm is used to select the coefficients of integral terminal sliding mode controller to improve the performance of the proposed method. Simulation results demonstrate the improvement in the response speed, chattering rejection, transient response,and robustness against uncertainties.展开更多
The ionization characteristics of the analytes in a low power Ar microwave plasma torch (MPT) was studied. The influence of forward microwave power, the flow rate of carrier gas and matrix element on the degree of ion...The ionization characteristics of the analytes in a low power Ar microwave plasma torch (MPT) was studied. The influence of forward microwave power, the flow rate of carrier gas and matrix element on the degree of ionization were observed. The axial profiles of the degree of the ionization of some elements were determined. The experimental results are very important for developing the new analytical source——microwave plasma torch (MPT).展开更多
The determination of carbon by means of microwave plasma torch atomic emission spectrometry(MPT-AES) was studied. Aqueous samples were introduced with a pneumatic nebulization system. The detection limit for carbon wa...The determination of carbon by means of microwave plasma torch atomic emission spectrometry(MPT-AES) was studied. Aqueous samples were introduced with a pneumatic nebulization system. The detection limit for carbon was 0. 047μg/mL.The method was applied to the analysis for tap water and results were satisfactory.展开更多
The microwave plasma atomic spectrometry is an important branch of the plasma atomic spectrometry. Since the first use of microwave induced plasma(MIP) as an excitation source for spectral Chemical analysis by Broid...The microwave plasma atomic spectrometry is an important branch of the plasma atomic spectrometry. Since the first use of microwave induced plasma(MIP) as an excitation source for spectral Chemical analysis by Broida and Chapmanin in 1958, especially the introduction of TM;cavity by Beenakker in 1976 and of surfatron by Moisan in 1979 with which an atmospheric pressure helium MIP could be obtained, MIP has received considerable attention as a new excitation source for spectrometric analysis. However, since MIP suffers from the in ability to analyse the aqueous sam-展开更多
Although the flow injection(FI) as a sample introduction technique has been extensively applied to atomic spectrometry, such as ICP-AES and AAS, very little has been done so far on coupling FI to microwave plasma syst...Although the flow injection(FI) as a sample introduction technique has been extensively applied to atomic spectrometry, such as ICP-AES and AAS, very little has been done so far on coupling FI to microwave plasma systems. Gehlausen et al. determined aqueous fluorine by coupling flow injection analysis (FIA) with HeMIP展开更多
The determination of the elements of groups ⅢA and ⅣA by means of microwave plasma torch atomic emission spectrometry(MPT AES) was studied systematically. Sample solutions were introduced into the plasma with a pn...The determination of the elements of groups ⅢA and ⅣA by means of microwave plasma torch atomic emission spectrometry(MPT AES) was studied systematically. Sample solutions were introduced into the plasma with a pneumatic nebulizer in continuous sampling mode and flow injection (FI) mode. The emission characteristics of these elements were investigated in details, and the basic data obtained are very important to the development of MPT AES. The analytical performances were examined. For most elements, the detection limits obtained by this method were principally the same as those obtained by inductively coupled plasma atomic emission spectrometry (ICP AES).展开更多
基金supported by National Natural Science Foundation of China (No. 50476081)
文摘In this work, a magnetic fluid dynamics (MHD) model is used to simulate the electromagnetic field, heat transfer and fluid flow in a DC non-transferred arc plasma torch under laminar and turbulent conditions. The electric current density, temperature and velocity distributions in the torch are obtained through the coupled iterative calculation about the electromagnetic equations described in a magnetic vector potential format and the modified fluid dynamics equations. The fluid-solid coupled calculation method is applied to guarantee the continuity of the electric current and heat transfer at the interface between the electrodes and fluid. The predicted location of the anodic arc root attachment and the arc voltage of the torch are consistent with corresponding experimental results. Through a specific analysis of the influence of mass flow rates and electric current on the torch outlet parameters, the total thermal efficiency, thermal loss of each part, and the laws of the variation of outlet parameters with the variation of mass flow rates and electric current was obtained. It is found that operation under a laminar condition with a limited area of the anode could increase the total thermal efficiency of the torch.
文摘Dependence of the current-voltage characteristics of a non-transferred DC cascaded plasma torch used for nanoparticle synthesis, on the plasma current and the plasma argon gas flow rate are reported in this paper. The potential structure inside the torch and its dependence on the plasma current and gas flow rate are also investigated. The arc voltage is seen to exhibit negative characteristic for a current below 150 A and positive characteristic above that current value. The voltage drop near the electrodes is found to decrease with the increase in plasma current. 25~ of the total voltage is dropped near the cathode at a plasma current of 50 A and a argon plasma gas flow rate of 10 liter per minute (LPM), and it decreases to 12% with the current increasing to 300 A, and to 17% with a gas flow rate of 25 LPM. The variation in the torch efficiency with the gas flow rate and plasma current is also reported. The efficiency of the torch is found to be between 36% and 48%. In addition, the plasma gas temperature at various positions of the reactor and for different currents and voltages are measured by calorimetric estimation with a heat balance technique.
基金Supported by the Science and Technology Development Program of Jilin Province, P. R. China(No. 20010306-1).
文摘Excitation( Texc ) and rotation( Trot ) temperatures were determined under different conditions for an oxygen-shielded argon microwave plasmsa torch source(OS-Ar-MPT). The Texc value, which was shown to be between 4300 and 5250 K under different operating conditions, was calculated from the slope of the Boltzmann plot with Fe as the thermometric species. The Trot value, which was in the range of 2100-2500 K, was measured with OH molecular spectra. The influences of microwave power, flow rates of the support gas, cartier gas, and shielding gas, as well as the observation height on Texc and Trot were investigated and discussed. The detailed results of Texc and Trot provided a better understanding of the performance of an OS-ArMPT as a source for atomic emission spectrometry.
基金supported by National Natural Science Foundation of China(No.51405315)the Laboratory of Precision Manufacturing Technology,CAEP(No.KF15002)
文摘Based on two typical laminar plasma torches (LPT), i.e. a multi-electrode plasma torch (MEPT) with segmented anode structure and a two-electrode plasma torch (TEPT) with conventional structure, this paper studied the influence of the LPTs construction on the jet characteristics. Experiments were designed to measure their arc voltage, jet length, thermal efficiency and specific enthalpy using a home-made data acquisition system. With them, the jet characteristics of the two different LPTs were compared in detail. Results show that different plasma torch construction leads to distinctively different characteristics of the generated plasma jet. Based on the different jet characteristics, a plasma torch with appropriate construction could be used to meet the different application requirements.
基金the support of National Natural Science Foundation of China (No. 51405315)the Talents Introduction Project of Sichuan University (No. yj2012043)
文摘Direct current plasma torches have been applied to generate unique sources of thermal energy in many industrial applications. Nevertheless, the successful ignition of a plasma torch is the key process to generate the unique source (plasma jet). However, there has been tittle study on the underlying mechanism of this key process. A thorough understanding of the ignition process of a plasma torch will be helpful for optimizing the design of the plasma torch structure and selection of the ignition parameters to prolong the service life of the ignition module. Thus, in this paper, the ignition process of a segmented plasma torch (SPT) is theoretically and experimentally modeled and analyzed. Corresponding electrical models of different stages of the ignition process axe set up and used to derive the electrical parameters, e.g. the variations of the arc voltage and arc current between the cathode and anode. In addition, the experiments with different ignition parameters on a home-made SPT have been conducted. At the same time, the variations of the arc voltage and arc current have been measured, and used to verify the ones derived in theory and to determine the optimal ignition parameters for a particular SPT.
基金National Natural Science Foundation of China(Nos.11675177,11875256)the Anhui Province Scientific and Technological Project(No.1604a0902145).
文摘Five turbulence models of Reynolds average Navier-Stokes(RANS),including the standard k-ω model,the RNG k-e model taking into account the low Reynolds number effect,the realizable k-ω model,the SST k-ω model,and the Reynolds stress model(RSM),are employed in the numerical simulations of direct current(DC)arc plasma torches in the range of arc current from 80 A to 240 A and air gas flow rate from 10 m^3 h^-1 to 50 m^3 h^-1.The calculated voltage,electric field intensity,and the heat loss in the arc chamber are compared with the experiments.The results indicate that the arc voltage,the electric field,and the heat loss in the arc chamber calculated by using the standard k-ω model,the RNG k-ωmodel taking into account the low Reynolds number effect,and the realizable k-ω model are much larger than those in the experiments.The RSM predicts relatively close results to the experiments,but fails in the trend of heat loss varying with the gas flow rate.The calculated results of the SST k-ω model are in the best agreement with the experiments,which may be attributed to the reasonable predictions of the turbulence as well as its distribution.
文摘Thermal plasma was applied for the treatment of coke wastewater sludge derived from the steel industry in order to investigate the feasibility of the safe treatment and energy recovery of the sludge. A 30 kW plasma torch system was applied to study the vitrification and gas production of coke wastewater sludge. Toxicity leaching results indicated that the sludge treated via the thermal plasma process converted into a vitrified slag which resisted the leaching of heavy metals. CO2 was utilized as working gas to study the production and heat energy of the syngas. The heating value of the gas products by thermal plasma achieved 8.43 k J/L, indicating the further utilization of the gas products. Considering the utilization of the syngas and recovery heat from the gas products, the estimated treatment cost of coke wastewater sludge via plasma torch was about 0.98 CNY/kg sludge in the experiment. By preliminary economic analysis, the dehydration cost takes an important part of the total sludge treatment cost. The treatment cost of the coke wastewater sludge with 50 wt.% moisture was calculated to be about 1.45 CNY/kg sludge dry basis. The treatment cost of the coke wastewater sludge could be effectively controlled by decreasing the water content of the sludge. These findings suggest that an economic dewatering pretreatment method could be combined to cut the total treatment cost in an actual treatment process.
文摘A microwave plasma torch (MPT) simultaneous spectrometer was used to study the spectral character and the matrix effect on alkali metal ions in solution. The main parameters were optimized. The microwave forward power was 100 W. The argon flow rate that was used to sustain the Ar-MPT included the flow rate of carrier gas and the flow rate of support gas, which were 0. 8 and 1.0 L/min, respectively. The HC1 concentration in the solution was 0.02 mol/L. The observation height was 9. 0 ram. The detection limits of Li, Na, K, Rb, and Cs were 0. 0003, 0. 0004, 0. 009, 0.07 and 2.4 mg/L, respectively, and the resuhs obtained by the Ar-MPT were compared with those obtained by argon inductively coupled plasma(Ar-ICP) and argon microwave induced plasma(Ar-MIP). The interference effects of several matrix elements were also studied.
基金the support of the Key Research Program of the Sichuan Provincial Science and Technology Department,China(No.2017GZ0096)
文摘Thermal steam plasma jet is promising for applications in environmental industries due to its distinctive characteristics of high enthalpy and high chemical reactivity. However, the performance of the steam plasma torch for its generation is limited by the problems of the large arc voltage fluctuation and serious erosion of the electrodes. In this study, a gas-stabilized steam plasma torch which can operate continuously and stably was designed. Experiments were conducted to reveal the effect of the different working parameters, including the anode diameter, the cooling water temperature, the arc current and the steam flow rate, on its Volt-Ampere characteristics, arc voltage fluctuation, thermal efficiency, jet characteristics and electrodes erosion. Results showed that the use of hot water to cool the electrodes can effectively prevent the condensation of steam on the inner wall of the electrodes, thus significantly reducing the arc voltage fluctuations and electrodes erosion. This is crucial for increasing the working life of the electrodes and ensuring long-term stability of the steam plasma torch. In addition, suitable anode diameter can greatly reduce the arc voltage fluctuation of the steam plasma torch and effectively improve the stability of the steam plasma jet. Furthermore, high arc current can effectively reduce the fluctuations of the arc voltage and increase the length and the volume of the steam plasma jet. Finally, using steam as the plasma forming gas can achieve higher thermal efficiency compared to air. An ideal thermal efficiency can be achieved by properly reducing the arc current and increasing the steam flow rate.
基金financial supports from the Scientific and Technological Research Council of Turkey(No.215M895)。
文摘This study was carried out to investigate the possibility of titanium alloy metal powder production using low-power plasma torches.An argon DC non-transferred arc plasma torch was designed,and numerical analysis was conducted to determine the plasma jet properties and wire temperature.The highest velocities inside the nozzle attachment were between 838 and 1178 m/s.The velocities of the jets at the apex were between 494 and 645 m/s for different gas flow rates.The studied plasma gas flow rates had no significant effect on the effective plasma jet length.It was shown that the plasma jet length can be estimated by numerical analysis using the temperature and velocity changes of the plasma jet over distance.It was observed that the powders produced were spherical without any satellites.As a result of this study,a plasma torch was developed and powder production was performed successfully by using relatively low torch power.
基金the supports of the Key R&D Program of Advanced Technology of Sichuan Science and Technology Department(No.2020YFG0111)。
文摘Arc plasma torch is an effective tool for spheroidization of metallic powders.However,as most conventional plasma torches were not specifically designed for plasma spheroidization,they may exhibit the disadvantages of the radial injection of powders,large fluctuations in the arc voltage,large gas flow rate,and disequilibrium between multiple plasma jets during the spheroidization process.Therefore,this paper presents a triple-cathode cascade plasma torch(TCCPT)for plasma spheroidization.Its structural design,including three cathodes,a common anode,and three sets of inter-electrodes,are detailed to ensure that powders can be inserted into the plasma jet by axial injection,the arc voltage fluctuations are easily maintained at a low level,and the plasma torches can work at a relatively small gas flow rate.Experimental results showed that the proposed TCCPT exhibits the following characteristics:(1)a relatively small arc voltage fluctuation within 5.3%;(2)a relatively high arc voltage of 75 V and low gas flow rate range of10-30 SLM;(3)easy to be maintained at the equilibrium state with the equilibrium index of the three plasma jets within 3.5 V.Furthermore,plasma spheroidization experiments of SUS304 stainless steel powers were carried out using the proposed TCCPT.Results verified that the proposed TCCPT is applicable and effective for the spheroidization of metallic powders with wide size distribution.
文摘Laminar plasma jet(LPJ)generated by laminar plasma torch(LPT)has a favorable temperature and velocity distribution.Thus,it is superior to the turbulent plasma jet in material processing.However,most of the reported LPTs usually operate at a relatively low output power with a relatively low arc voltage and thermal efficiency,which limits its capabilities.In this context,this paper attempts to design a new type of high-power LPT with a relatively low arc current and a high thermal efficiency.In the first section,the design principle of the main components is studied and discussed in detail,and a new high-power LPT is proposed.Then,the experimental characteristics of the proposed high-power LPT are examined.Experimental results reveal the following characteristics of the proposed LPT.(1)The max jet length of the proposed LPT reaches at 540 mm.(2)Its mean arc voltage is higher than 290 V when the LPT works with arc currents lower than 200 A.leading to an output power greater than 50 kW.(3)The mean thermal efficiency is higher than 509f.Lastly,the proposed LPT has been applied to spheroidize the aluminum oxide powers.The experiment results for the production of spherical powders show that the proposed LPT hits a good characteristic for material processing.
文摘A new automatic sample solution introduction system for miniature simultaneous microwave plasma torch(MPT) atomic emission spectrometer was developed. The operating parameters were optimized. The detection limits of the spectrometer with an ultrasonic nebulizer for Ag, Al, Ba, Ca, Cr, Cu, Fe, Mg, Mn, Sr, and V are 5-10 times lower than those obtained with a pneumatic nebulizer and are also lower than those obtained by a Model JX-lOlO MPT spectrometer. Two practical samples were analyzed to test the reliability and sensitivity of the system.
文摘An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system.In this method, a new sliding surface is defined based on a combination of the conventional sliding surface in terminal sliding mode control and a nonlinear function of the integral of the system states. It is assumed that the dynamics of a chaotic system are unknown and also the system is exposed to disturbance and unstructured uncertainty. To achieve a chattering-free and high-speed response for such an unknown system, an adaptive neuro-fuzzy inference system is utilized in the next step to approximate the unknown part of the nonlinear dynamics. Then, the proposed integral terminal sliding mode controller stabilizes the approximated system based on Lyapunov's stability theory. In addition, a Bee algorithm is used to select the coefficients of integral terminal sliding mode controller to improve the performance of the proposed method. Simulation results demonstrate the improvement in the response speed, chattering rejection, transient response,and robustness against uncertainties.
基金Supported by the National Natural Science Foundation of China
文摘The ionization characteristics of the analytes in a low power Ar microwave plasma torch (MPT) was studied. The influence of forward microwave power, the flow rate of carrier gas and matrix element on the degree of ionization were observed. The axial profiles of the degree of the ionization of some elements were determined. The experimental results are very important for developing the new analytical source——microwave plasma torch (MPT).
文摘The determination of carbon by means of microwave plasma torch atomic emission spectrometry(MPT-AES) was studied. Aqueous samples were introduced with a pneumatic nebulization system. The detection limit for carbon was 0. 047μg/mL.The method was applied to the analysis for tap water and results were satisfactory.
基金Supported by the National Natural Science Foundation of China
文摘The microwave plasma atomic spectrometry is an important branch of the plasma atomic spectrometry. Since the first use of microwave induced plasma(MIP) as an excitation source for spectral Chemical analysis by Broida and Chapmanin in 1958, especially the introduction of TM;cavity by Beenakker in 1976 and of surfatron by Moisan in 1979 with which an atmospheric pressure helium MIP could be obtained, MIP has received considerable attention as a new excitation source for spectrometric analysis. However, since MIP suffers from the in ability to analyse the aqueous sam-
基金Supported by the National Natural Science Founddation of China
文摘Although the flow injection(FI) as a sample introduction technique has been extensively applied to atomic spectrometry, such as ICP-AES and AAS, very little has been done so far on coupling FI to microwave plasma systems. Gehlausen et al. determined aqueous fluorine by coupling flow injection analysis (FIA) with HeMIP
文摘The determination of the elements of groups ⅢA and ⅣA by means of microwave plasma torch atomic emission spectrometry(MPT AES) was studied systematically. Sample solutions were introduced into the plasma with a pneumatic nebulizer in continuous sampling mode and flow injection (FI) mode. The emission characteristics of these elements were investigated in details, and the basic data obtained are very important to the development of MPT AES. The analytical performances were examined. For most elements, the detection limits obtained by this method were principally the same as those obtained by inductively coupled plasma atomic emission spectrometry (ICP AES).