Ni-based composite coatings with a high content of tungsten carbides(Stelcar65composite coatings)were synthesized by plasma transferred arc(PTA)hardfacing.The welding parameters of Stelcar65composite coatings were opt...Ni-based composite coatings with a high content of tungsten carbides(Stelcar65composite coatings)were synthesized by plasma transferred arc(PTA)hardfacing.The welding parameters of Stelcar65composite coatings were optimized by orthogonal tests.The PTA welding parameters including welding current,powder feed rate and welding speed have significant influence on the tungsten carbide degradation.The values for the optimum welding current,powder feed rate and welding speed were determined to be100A,25g/min and40mm/min,respectively.The produced WC/Ni-based composite coatings were crack-and degradation-free.The microstructure of deposited layers,as well as the microstructure and microhardness of the optimal coating were further analyzed.展开更多
Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of th...Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of the cobait-based alloys were investigated using an optical microscope, a scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It was found that a cobalt-based solid solution with a face-centered cubic crystal structure was presented accompanied by the secondary phase M7C3 with a hexagonal crystal structure in the Y2O3-free cobalt-based alloy coating. Several stacking faults exist in the cobalt-based solid solution. The addition of Y2O3 leads to the existence of the Y2O3 phase in the Y2O3-modified coatings. Though stacking fault exists in the Y2O3-modified coatings, its density increases. The addition of Y2O3 can refine the microstructure and can increase the wear resistance properties when its contents are less than or equal to 0.8 wt.%. However, further increase of its contents will lead to the agglomeration of undissolved Y2O3 particles at the γ-Co grain boundary, and will lead to a coarse microstructure and lower wear resistance properties.展开更多
Fe-based coatings reinforced by spherical tungsten carbide were deposited on 304 stainless steel using plasma transferred arc(PTA) technology.The composition and phase microstructure of the coatings were evaluated usi...Fe-based coatings reinforced by spherical tungsten carbide were deposited on 304 stainless steel using plasma transferred arc(PTA) technology.The composition and phase microstructure of the coatings were evaluated using scanning electron microscopy(SEM),energy dispersive spectrometer(EDS) and X-ray diffraction(XRD).The corrosion behaviors of the coatings in 0.5 mol/L HCl solution were studied using polarization curve and electrochemical impedance spectroscopy(EIS) measurements.The experimental results shows that the tungsten carbide improves the corrosion resistance of the Fe-based alloy coating,but increase in the mass fraction of tungsten carbide leads to increasing amount of defects of holes and cracks,which results in an adverse effect on the corrosion resistance.The defects are mainly present on the tungsten carbide but also extend to the Fe-based matrix.The tungsten carbide,acting as a cathode,and binding material of Fe-based alloy,acting as an anode,create a galvanic corrosion cell.The binding material is preferentially corroded and causes the degradation of the coating.展开更多
The microstructure, substructure, and wear characteristic of cobalt-basedalloy coatings obtained by plasma transferred arc (PTA) process were investigated using opticalmetallurgical microscope, X-ray diffraction (XRD)...The microstructure, substructure, and wear characteristic of cobalt-basedalloy coatings obtained by plasma transferred arc (PTA) process were investigated using opticalmetallurgical microscope, X-ray diffraction (XRD), scanning electron microscope (SEM), transmissionelectron microscope (TEM), and dry sand abrasion tester (DSAT). The aging effect on the structureand wear resistance of the cobalt-based PTA coating was also studied. The results show that theas-welded coating consists of cobalt-based solid solution with face-centered cubic structure andhexagonal (Cr,Fe)_7C_3. There are a lot of stacking faults existing in the cobalt-based solidsolution. After aging at 600 deg C for 60 h, the microstructure becomes coarse, and another carbide(Cr,Fe)_(23)C_6 precipitates. As a result, the wear mass loss of the aged sample is higher than thatof the as-welded sample.展开更多
In this work, the in-situ TiC panicles reinforced composite coating was prepared by plasma transferred arc process on the surface of Q235 steel. Microstructures, phase composition and wear property of the coating were...In this work, the in-situ TiC panicles reinforced composite coating was prepared by plasma transferred arc process on the surface of Q235 steel. Microstructures, phase composition and wear property of the coating were investigated. The results showed that the composite coating consisted mainly of T-Ni, TiC, Cr23C6, Cr7C3, Ni3Si, CrB, Cr5B3 and FeNi3 phases, and was characterized by fine TiC panicles embedded in Ni matrix. The wear resistance of composite coating was significantly improved compared with that of the steel substrate. The wear volume loss of the substrate was 443 mm3, which was about 9 times as that of in-situ TiC particles reinforced composite coating (49 mm3 ). It is mainly attributed to the presence of chromium carbide particles and in-situ TiC particles and their favorable combination with Ni matrix.展开更多
The application of response surface methodology was highlighted to predict and optimize the percentage of dilution of iron-based hardfaced surface produced by the PTA (plasma tratisferred arc welding) process. The e...The application of response surface methodology was highlighted to predict and optimize the percentage of dilution of iron-based hardfaced surface produced by the PTA (plasma tratisferred arc welding) process. The experiments were conducted based on five-factor five-level central composite rotatable design with full replication technique and a mathematical model was developed using response surface methodology. Furthermore, the response surface methodology was also used to optimize the process parameters that yielded the lowest percentage of dilution.展开更多
This paper presents an investigation on depo- sition of Inconel-625 using laser rapid manufacturing (LRM) and plasma transferred arc (PTA) deposition in individual and tandem mode. LRM has advantages in terms of d...This paper presents an investigation on depo- sition of Inconel-625 using laser rapid manufacturing (LRM) and plasma transferred arc (PTA) deposition in individual and tandem mode. LRM has advantages in terms of dimensional accuracy, improved mechanical properties, finer process control, reduced heat input and lower thermal distortion, while PTA scores more in terms of lower initial investment, lower running cost and higher deposition rate. To quantify the clubbed advantages and limitations of both processes, these were studied individually and in tandem. A number of samples were deposited at different process parameters like power, scan speed, powder feed rate. They were subjected to tensile test, adhesion-cohesion test, impact test and micro hardness measurement. The results of individual tests showed the comparable mechanical prop- erties with i20% variation. The mixed dendritic-cellular and dendritic-columnar microstructures were respectively observed for LRM and PTA deposits with a distinct inter- face for the case of tandem deposition. The interface strength of tandem deposits was evaluated employing adhesion-cohesion test, and it was found to be (325 i 35) MPa. The study confirmed the viability of LRM and PTA deposition in tandem for hybrid manufacturing.展开更多
The effects of different experimental conditions on the dry sliding wear behavior of stainless steel surface produced by plasma transferred arc (PTA) hardfacing process were studied. The wear test was conducted in a...The effects of different experimental conditions on the dry sliding wear behavior of stainless steel surface produced by plasma transferred arc (PTA) hardfacing process were studied. The wear test was conducted in a pinon-roller wear testing machine, at constant sliding distance of 1 kin. Mathematical models were developed to estimate wear rate incorporating with rotational speed, applied load and roller hardness using statistical tools such as design of experiments, regression analysis and analysis of variance. It is found that the wear resistance of the PTA hardfaced stainless steel surface is better than that of the carbon steel substrate.展开更多
The plasma transferred arc (PTA) forming remanufacturing technology was introduced in this paper. This technology includes plasma surfacing, deposition and rapid forming technology. With self-developed plasma formin...The plasma transferred arc (PTA) forming remanufacturing technology was introduced in this paper. This technology includes plasma surfacing, deposition and rapid forming technology. With self-developed plasma forming system, the thrust of engine cylinder body was remanufactured by PTA powder surfacing. In the concrete, the Nil5 alloy was deposited on the thrust face of the body in order to recover its dimension. In addition, the reman- ufacturing forming with Fe-based, Inconel 625 alloy was studied. The microstructure and hardness of the as-depos- ited materials were investigated.展开更多
Comparisons of particle’s thermal behavior between Fe base alloy and boron carbide in plasma transferred arc (PTA) space was made based on theoretical evaluation results in this article. It was found that most of t...Comparisons of particle’s thermal behavior between Fe base alloy and boron carbide in plasma transferred arc (PTA) space was made based on theoretical evaluation results in this article. It was found that most of the Fe base particles would be fully melted while they transporting through the central plasma field with 200 A surfacing currents. And the particles with a diameter less than 0.5×10 -4 m might be fully evaporated. However, for the boron carbide (B 4C) particles, only the one with a diameter less than 0.5×10 -4 m could be melted in the same PTA space. Most of B 4C particles are only preheated at its solid state when they were fed through the central field of PTA plasma when the surfacing current is equal to or less than 200 A . When the arc current was smaller than100 A , only the particles smaller than 0.5×10 -4 m could be melted in the PTA space for the Fe base alloy. Almost none of the discussed B 4C particles could be melted in the 100 A PTA space.展开更多
The utilization of industrial solid waste for metal recovery requires high-temperature tools due to the presence of silica and alumina, which is reducible at high temperature. In a plasma arc furnace, transferred arc ...The utilization of industrial solid waste for metal recovery requires high-temperature tools due to the presence of silica and alumina, which is reducible at high temperature. In a plasma arc furnace, transferred arc plasma furnace(TAP) can meet all requirements, but the disadvantage of this technology is the high cost. For performing experiments in the laboratory, the TAP was fabricated indigenously in a laboratory based on the different inputs provided in the literature for the furnace design and fabrication. The observed parameters such as arc length, energy consumption, graphite electrode consumption, noise level as well as lining erosion were characterized for this fabricated furnace. The nitrogen plasma increased by around 200 K(200 ℃) melt temperature and noise levels decreased by ~10 d B compared to a normal arc.Hydrogen plasma offered 100 K(100 ℃) higher melt temperature with ~5 d B higher sound level than nitrogen plasma. Nitrogen plasma arc melting showed lower electrode and energy consumption than normal arc melting, whereas hydrogen plasma showed lower energy consumption and higher electrode consumption in comparison to nitrogen plasma. The higher plasma arc temperature resulted in a shorter meltdown time than normal arc with smoother arcing. Hydrogen plasma permitted more heats, reduced meltdown time, and lower energy consumption, but with increased graphite consumption and crucible wear. The present study showed that the fabricated arc plasma is better than the normal arc furnace with respect to temperature generation, energy consumption, and environmental friendliness. Therefore, it could be used effectively for smelting-reduction studies.展开更多
The technology of plasma arc was used to modify the interface adhesion between c hromium coating and steel substrate. The interface microstructure was studied as a function of plasma arc processing parameters. Microst...The technology of plasma arc was used to modify the interface adhesion between c hromium coating and steel substrate. The interface microstructure was studied as a function of plasma arc processing parameters. Microstructure analysis was per formed by optical microscopy, scanning electron microscopy and electron probe. T he microhardness distribution along the depth of a cross-section of the chromium coating and the substrate was measured. The results show the energy density of transferred plasma arc is obviously higher than plasma non-transferred arc. The molten interface was obtained by plasma transferred arc. Interfaces between chro mium coating and steel substrate can be divided by plasma non-transferred arc in to three classes: non-molten, a little molten and molten. Good interface bonding was obtained by proper process parameters. The microhardness of chromium coatin g decreases with increasing energy density of plasma arc.展开更多
A wear resistant (Cr, Fe)7C3/γ-Fe ceramalcomposite coating wasfabricatedon substrate of a 0.45% C carbon steel by plasma transferred arc (PTA) cladding process using the Fe-Cr-C elemental powder blends. The micro...A wear resistant (Cr, Fe)7C3/γ-Fe ceramalcomposite coating wasfabricatedon substrate of a 0.45% C carbon steel by plasma transferred arc (PTA) cladding process using the Fe-Cr-C elemental powder blends. The microstructure, microhardness and dry sliding wear resistance of the coating were evaluated. Results indicate that the plasma transferred arc clad ceramal composite coating has a rapidly solidified microstructure consisting of blocky primary (Cr, Fe)7C3 and the interblocky ( Cr, Fe)7C3/γ-Fe eutectics and is metallurgically bonded to the 0.45%C carbon steel substrate. The ceramal composite coating has high hardness and excellent wear resistance under dry sliding wear test condition.展开更多
The effect of electromagnetic stirring on the microstructure and wear behavior of coatings has been investigated. A series of iron-based coatings were fabricated by the plasma-transferred arc cladding process by apply...The effect of electromagnetic stirring on the microstructure and wear behavior of coatings has been investigated. A series of iron-based coatings were fabricated by the plasma-transferred arc cladding process by applying different magnetic field currents. The microstructure and wear resistance of the composite coatings were characterized by scanning electron microscope (SEM), en- ergy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD), and wet sand rubber wheel abrasion tester. The experimental results showed that the microstructure of the coatings was mainly the γ-Fe matrix and (Cr, Fe)7C3 carbide reinforced phase. The coatings were metallurgically bonded to the substrate. With increasing magnetic field current, the amount of the block-like (Cr, Fe)TC3 carbide reinforced phase increased at first, reached a local maximum, and then decreased sharply. When the magnetic field current reached 3 A, the block-like (Cr, Fe)TC3 carbides with high volume fraction were uniformly distributed in the matrix and the coating displayed a high microhardness and an excellent wear resistance under the wear test condition.展开更多
Plasma surface hardening process was performed to improve the performance of the AISI 1045 carbon steel.Experiments were carried out to characterize the hardening qualities.A predicting and optimizing model using gene...Plasma surface hardening process was performed to improve the performance of the AISI 1045 carbon steel.Experiments were carried out to characterize the hardening qualities.A predicting and optimizing model using genetic algorithm-back propagation neural network(GA-BP) was developed based on the experimental results.The non-linear relationship between properties of hardening layers and process parameters was established.The results show that the GA-BP predicting model is reliable since prediction results are in rather good agreement with measured results.The optimal properties of the hardened layer were deduced from GA.And through multi optimizations,the optimum comprehensive performances of the hardened layer were as follows:plasma arc current is 90 A,hardening speed is 2.2 m/min,plasma gas flow rate is 6.0 L/min and hardening distance is 4.3 mm.It concludes that GA-BP mode developed in this study provides a promising method for plasma hardening parameters prediction and optimization.展开更多
In this study,the effects of various surface treatments on the friction and wear behavior of AISI 4140 steel have been evaluated.Sample surfaces of AISI 4140 steel were treated by quenching,carburizing,boronizing and ...In this study,the effects of various surface treatments on the friction and wear behavior of AISI 4140 steel have been evaluated.Sample surfaces of AISI 4140 steel were treated by quenching,carburizing,boronizing and plasma transferred arc (PTA) modification.The microstructural characteristics of surface treated steel samples were examined by optical microscopy and scanning electron microscopy (SEM).The mechanical properties of the samples including the surface roughness,microhardness,and abrasive and adhesive wear characteristics were also evaluated.Wear tests were applied by using a block-on-disc configuration under dry sliding conditions.The wear behavior and friction characteristics of the samples were determined as a function of sliding distance.Each sample group was compared with the other sample groups,and it was observed that the carburized samples demonstrated the lowest weight losses;however,PTA-treated samples demonstrated the lowest coefficient of friction in comparison to the other sample groups at the same sliding distance.展开更多
Wear tests are essential in the design of parts intended to work in environments that subject a part to high wear.Wear tests involve high cost and lengthy experiments,and require special test equipment.The use of mach...Wear tests are essential in the design of parts intended to work in environments that subject a part to high wear.Wear tests involve high cost and lengthy experiments,and require special test equipment.The use of machine learning algorithms for wear loss quantity predictions is a potentially effective means to eliminate the disadvantages of experimental methods such as cost,labor,and time.In this study,wear loss data of AISI 1020 steel coated by using a plasma transfer arc welding(PTAW)method with FeCrC,FeW,and FeB powders mixed in different ratios were obtained experimentally by some of the researchers in our group.The mechanical properties of the coating layers were detected by microhardness measurements and dry sliding wear tests.The wear tests were performed at three different loads(19.62,39.24,and 58.86 N)over a sliding distance of 900 m.In this study,models have been developed by using four different machine learning algorithms(an artificial neural network(ANN),extreme learning machine(ELM),kernel-based extreme learning machine(KELM),and weighted extreme learning machine(WELM))on the data set obtained from the wear test experiments.The R2 value was calculated as 0.9729 in the model designed with WELM,which obtained the best performance among the models evaluated.展开更多
In this study,experimental wear losses under different loads and sliding distances of AISI 1020 steel surfaces coated with(wt.%)50FeCrC‐20FeW‐30FeB and 70FeCrC‐30FeB powder mixtures by plasma transfer arc welding w...In this study,experimental wear losses under different loads and sliding distances of AISI 1020 steel surfaces coated with(wt.%)50FeCrC‐20FeW‐30FeB and 70FeCrC‐30FeB powder mixtures by plasma transfer arc welding were determined.The dataset comprised 99 different wear amount measurements obtained experimentally in the laboratory.The linear regression(LR),support vector machine(SVM),and Gaussian process regression(GPR)algorithms are used for predicting wear quantities.A success rate of 0.93 was obtained from the LR algorithm and 0.96 from the SVM and GPR algorithms.展开更多
基金Project (2016YFB0300502) supported by the National Key Research and Development Program of ChinaProjects (51601129,51775386) supported by the National Natural Science Foundation of China+2 种基金Project (16PJ1410000) supported by Shanghai Pujiang Program,ChinaProject (16ZR1438700) supported by the Natural Science Foundation of Shanghai,ChinaProject (TPL1706) supported by Traction Power State Key Laboratory of Southwest Jiaotong University,China
文摘Ni-based composite coatings with a high content of tungsten carbides(Stelcar65composite coatings)were synthesized by plasma transferred arc(PTA)hardfacing.The welding parameters of Stelcar65composite coatings were optimized by orthogonal tests.The PTA welding parameters including welding current,powder feed rate and welding speed have significant influence on the tungsten carbide degradation.The values for the optimum welding current,powder feed rate and welding speed were determined to be100A,25g/min and40mm/min,respectively.The produced WC/Ni-based composite coatings were crack-and degradation-free.The microstructure of deposited layers,as well as the microstructure and microhardness of the optimal coating were further analyzed.
基金This work is financially supported by the Scientific Research Foundation for Young Teachers of Anhui Province, China (No. 2006jql082).
文摘Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of the cobait-based alloys were investigated using an optical microscope, a scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It was found that a cobalt-based solid solution with a face-centered cubic crystal structure was presented accompanied by the secondary phase M7C3 with a hexagonal crystal structure in the Y2O3-free cobalt-based alloy coating. Several stacking faults exist in the cobalt-based solid solution. The addition of Y2O3 leads to the existence of the Y2O3 phase in the Y2O3-modified coatings. Though stacking fault exists in the Y2O3-modified coatings, its density increases. The addition of Y2O3 can refine the microstructure and can increase the wear resistance properties when its contents are less than or equal to 0.8 wt.%. However, further increase of its contents will lead to the agglomeration of undissolved Y2O3 particles at the γ-Co grain boundary, and will lead to a coarse microstructure and lower wear resistance properties.
基金the China Postdoctoral Science Foundation(No.2017M620153)the Science&Technology Program of Shanghai Jian Qiao University(No.SJQ19012)。
文摘Fe-based coatings reinforced by spherical tungsten carbide were deposited on 304 stainless steel using plasma transferred arc(PTA) technology.The composition and phase microstructure of the coatings were evaluated using scanning electron microscopy(SEM),energy dispersive spectrometer(EDS) and X-ray diffraction(XRD).The corrosion behaviors of the coatings in 0.5 mol/L HCl solution were studied using polarization curve and electrochemical impedance spectroscopy(EIS) measurements.The experimental results shows that the tungsten carbide improves the corrosion resistance of the Fe-based alloy coating,but increase in the mass fraction of tungsten carbide leads to increasing amount of defects of holes and cracks,which results in an adverse effect on the corrosion resistance.The defects are mainly present on the tungsten carbide but also extend to the Fe-based matrix.The tungsten carbide,acting as a cathode,and binding material of Fe-based alloy,acting as an anode,create a galvanic corrosion cell.The binding material is preferentially corroded and causes the degradation of the coating.
文摘The microstructure, substructure, and wear characteristic of cobalt-basedalloy coatings obtained by plasma transferred arc (PTA) process were investigated using opticalmetallurgical microscope, X-ray diffraction (XRD), scanning electron microscope (SEM), transmissionelectron microscope (TEM), and dry sand abrasion tester (DSAT). The aging effect on the structureand wear resistance of the cobalt-based PTA coating was also studied. The results show that theas-welded coating consists of cobalt-based solid solution with face-centered cubic structure andhexagonal (Cr,Fe)_7C_3. There are a lot of stacking faults existing in the cobalt-based solidsolution. After aging at 600 deg C for 60 h, the microstructure becomes coarse, and another carbide(Cr,Fe)_(23)C_6 precipitates. As a result, the wear mass loss of the aged sample is higher than thatof the as-welded sample.
文摘In this work, the in-situ TiC panicles reinforced composite coating was prepared by plasma transferred arc process on the surface of Q235 steel. Microstructures, phase composition and wear property of the coating were investigated. The results showed that the composite coating consisted mainly of T-Ni, TiC, Cr23C6, Cr7C3, Ni3Si, CrB, Cr5B3 and FeNi3 phases, and was characterized by fine TiC panicles embedded in Ni matrix. The wear resistance of composite coating was significantly improved compared with that of the steel substrate. The wear volume loss of the substrate was 443 mm3, which was about 9 times as that of in-situ TiC particles reinforced composite coating (49 mm3 ). It is mainly attributed to the presence of chromium carbide particles and in-situ TiC particles and their favorable combination with Ni matrix.
基金the financial support to carry out this investigation through sponsored research and development project No.2003/20/36/1-BRNS.
文摘The application of response surface methodology was highlighted to predict and optimize the percentage of dilution of iron-based hardfaced surface produced by the PTA (plasma tratisferred arc welding) process. The experiments were conducted based on five-factor five-level central composite rotatable design with full replication technique and a mathematical model was developed using response surface methodology. Furthermore, the response surface methodology was also used to optimize the process parameters that yielded the lowest percentage of dilution.
文摘This paper presents an investigation on depo- sition of Inconel-625 using laser rapid manufacturing (LRM) and plasma transferred arc (PTA) deposition in individual and tandem mode. LRM has advantages in terms of dimensional accuracy, improved mechanical properties, finer process control, reduced heat input and lower thermal distortion, while PTA scores more in terms of lower initial investment, lower running cost and higher deposition rate. To quantify the clubbed advantages and limitations of both processes, these were studied individually and in tandem. A number of samples were deposited at different process parameters like power, scan speed, powder feed rate. They were subjected to tensile test, adhesion-cohesion test, impact test and micro hardness measurement. The results of individual tests showed the comparable mechanical prop- erties with i20% variation. The mixed dendritic-cellular and dendritic-columnar microstructures were respectively observed for LRM and PTA deposits with a distinct inter- face for the case of tandem deposition. The interface strength of tandem deposits was evaluated employing adhesion-cohesion test, and it was found to be (325 i 35) MPa. The study confirmed the viability of LRM and PTA deposition in tandem for hybrid manufacturing.
文摘The effects of different experimental conditions on the dry sliding wear behavior of stainless steel surface produced by plasma transferred arc (PTA) hardfacing process were studied. The wear test was conducted in a pinon-roller wear testing machine, at constant sliding distance of 1 kin. Mathematical models were developed to estimate wear rate incorporating with rotational speed, applied load and roller hardness using statistical tools such as design of experiments, regression analysis and analysis of variance. It is found that the wear resistance of the PTA hardfaced stainless steel surface is better than that of the carbon steel substrate.
文摘The plasma transferred arc (PTA) forming remanufacturing technology was introduced in this paper. This technology includes plasma surfacing, deposition and rapid forming technology. With self-developed plasma forming system, the thrust of engine cylinder body was remanufactured by PTA powder surfacing. In the concrete, the Nil5 alloy was deposited on the thrust face of the body in order to recover its dimension. In addition, the reman- ufacturing forming with Fe-based, Inconel 625 alloy was studied. The microstructure and hardness of the as-depos- ited materials were investigated.
文摘Comparisons of particle’s thermal behavior between Fe base alloy and boron carbide in plasma transferred arc (PTA) space was made based on theoretical evaluation results in this article. It was found that most of the Fe base particles would be fully melted while they transporting through the central plasma field with 200 A surfacing currents. And the particles with a diameter less than 0.5×10 -4 m might be fully evaporated. However, for the boron carbide (B 4C) particles, only the one with a diameter less than 0.5×10 -4 m could be melted in the same PTA space. Most of B 4C particles are only preheated at its solid state when they were fed through the central field of PTA plasma when the surfacing current is equal to or less than 200 A . When the arc current was smaller than100 A , only the particles smaller than 0.5×10 -4 m could be melted in the PTA space for the Fe base alloy. Almost none of the discussed B 4C particles could be melted in the 100 A PTA space.
文摘The utilization of industrial solid waste for metal recovery requires high-temperature tools due to the presence of silica and alumina, which is reducible at high temperature. In a plasma arc furnace, transferred arc plasma furnace(TAP) can meet all requirements, but the disadvantage of this technology is the high cost. For performing experiments in the laboratory, the TAP was fabricated indigenously in a laboratory based on the different inputs provided in the literature for the furnace design and fabrication. The observed parameters such as arc length, energy consumption, graphite electrode consumption, noise level as well as lining erosion were characterized for this fabricated furnace. The nitrogen plasma increased by around 200 K(200 ℃) melt temperature and noise levels decreased by ~10 d B compared to a normal arc.Hydrogen plasma offered 100 K(100 ℃) higher melt temperature with ~5 d B higher sound level than nitrogen plasma. Nitrogen plasma arc melting showed lower electrode and energy consumption than normal arc melting, whereas hydrogen plasma showed lower energy consumption and higher electrode consumption in comparison to nitrogen plasma. The higher plasma arc temperature resulted in a shorter meltdown time than normal arc with smoother arcing. Hydrogen plasma permitted more heats, reduced meltdown time, and lower energy consumption, but with increased graphite consumption and crucible wear. The present study showed that the fabricated arc plasma is better than the normal arc furnace with respect to temperature generation, energy consumption, and environmental friendliness. Therefore, it could be used effectively for smelting-reduction studies.
文摘The technology of plasma arc was used to modify the interface adhesion between c hromium coating and steel substrate. The interface microstructure was studied as a function of plasma arc processing parameters. Microstructure analysis was per formed by optical microscopy, scanning electron microscopy and electron probe. T he microhardness distribution along the depth of a cross-section of the chromium coating and the substrate was measured. The results show the energy density of transferred plasma arc is obviously higher than plasma non-transferred arc. The molten interface was obtained by plasma transferred arc. Interfaces between chro mium coating and steel substrate can be divided by plasma non-transferred arc in to three classes: non-molten, a little molten and molten. Good interface bonding was obtained by proper process parameters. The microhardness of chromium coatin g decreases with increasing energy density of plasma arc.
文摘A wear resistant (Cr, Fe)7C3/γ-Fe ceramalcomposite coating wasfabricatedon substrate of a 0.45% C carbon steel by plasma transferred arc (PTA) cladding process using the Fe-Cr-C elemental powder blends. The microstructure, microhardness and dry sliding wear resistance of the coating were evaluated. Results indicate that the plasma transferred arc clad ceramal composite coating has a rapidly solidified microstructure consisting of blocky primary (Cr, Fe)7C3 and the interblocky ( Cr, Fe)7C3/γ-Fe eutectics and is metallurgically bonded to the 0.45%C carbon steel substrate. The ceramal composite coating has high hardness and excellent wear resistance under dry sliding wear test condition.
基金This study was financially supported by the Major State Basic Research Development Program of China (973 Program, No.2007CB607601)the National Natural Science Foundation of China (No.50735006)
文摘The effect of electromagnetic stirring on the microstructure and wear behavior of coatings has been investigated. A series of iron-based coatings were fabricated by the plasma-transferred arc cladding process by applying different magnetic field currents. The microstructure and wear resistance of the composite coatings were characterized by scanning electron microscope (SEM), en- ergy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD), and wet sand rubber wheel abrasion tester. The experimental results showed that the microstructure of the coatings was mainly the γ-Fe matrix and (Cr, Fe)7C3 carbide reinforced phase. The coatings were metallurgically bonded to the substrate. With increasing magnetic field current, the amount of the block-like (Cr, Fe)TC3 carbide reinforced phase increased at first, reached a local maximum, and then decreased sharply. When the magnetic field current reached 3 A, the block-like (Cr, Fe)TC3 carbides with high volume fraction were uniformly distributed in the matrix and the coating displayed a high microhardness and an excellent wear resistance under the wear test condition.
文摘Plasma surface hardening process was performed to improve the performance of the AISI 1045 carbon steel.Experiments were carried out to characterize the hardening qualities.A predicting and optimizing model using genetic algorithm-back propagation neural network(GA-BP) was developed based on the experimental results.The non-linear relationship between properties of hardening layers and process parameters was established.The results show that the GA-BP predicting model is reliable since prediction results are in rather good agreement with measured results.The optimal properties of the hardened layer were deduced from GA.And through multi optimizations,the optimum comprehensive performances of the hardened layer were as follows:plasma arc current is 90 A,hardening speed is 2.2 m/min,plasma gas flow rate is 6.0 L/min and hardening distance is 4.3 mm.It concludes that GA-BP mode developed in this study provides a promising method for plasma hardening parameters prediction and optimization.
基金supported by the Eskisehir Osmangazi University Research Council (No. 200315015)
文摘In this study,the effects of various surface treatments on the friction and wear behavior of AISI 4140 steel have been evaluated.Sample surfaces of AISI 4140 steel were treated by quenching,carburizing,boronizing and plasma transferred arc (PTA) modification.The microstructural characteristics of surface treated steel samples were examined by optical microscopy and scanning electron microscopy (SEM).The mechanical properties of the samples including the surface roughness,microhardness,and abrasive and adhesive wear characteristics were also evaluated.Wear tests were applied by using a block-on-disc configuration under dry sliding conditions.The wear behavior and friction characteristics of the samples were determined as a function of sliding distance.Each sample group was compared with the other sample groups,and it was observed that the carburized samples demonstrated the lowest weight losses;however,PTA-treated samples demonstrated the lowest coefficient of friction in comparison to the other sample groups at the same sliding distance.
文摘Wear tests are essential in the design of parts intended to work in environments that subject a part to high wear.Wear tests involve high cost and lengthy experiments,and require special test equipment.The use of machine learning algorithms for wear loss quantity predictions is a potentially effective means to eliminate the disadvantages of experimental methods such as cost,labor,and time.In this study,wear loss data of AISI 1020 steel coated by using a plasma transfer arc welding(PTAW)method with FeCrC,FeW,and FeB powders mixed in different ratios were obtained experimentally by some of the researchers in our group.The mechanical properties of the coating layers were detected by microhardness measurements and dry sliding wear tests.The wear tests were performed at three different loads(19.62,39.24,and 58.86 N)over a sliding distance of 900 m.In this study,models have been developed by using four different machine learning algorithms(an artificial neural network(ANN),extreme learning machine(ELM),kernel-based extreme learning machine(KELM),and weighted extreme learning machine(WELM))on the data set obtained from the wear test experiments.The R2 value was calculated as 0.9729 in the model designed with WELM,which obtained the best performance among the models evaluated.
文摘In this study,experimental wear losses under different loads and sliding distances of AISI 1020 steel surfaces coated with(wt.%)50FeCrC‐20FeW‐30FeB and 70FeCrC‐30FeB powder mixtures by plasma transfer arc welding were determined.The dataset comprised 99 different wear amount measurements obtained experimentally in the laboratory.The linear regression(LR),support vector machine(SVM),and Gaussian process regression(GPR)algorithms are used for predicting wear quantities.A success rate of 0.93 was obtained from the LR algorithm and 0.96 from the SVM and GPR algorithms.