Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generat...Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generated from other methods such as periodic plasma wave field, spheroidal cavity regime and plasma channel guided acceleration. Trajectory of electron motion is described as hyperbolic, parabolic or elliptic paths. We find that the self-generated electron bunch has a smaller energy width and more effective gain in energy spectrum. Initial condition for the ellipsoidal cavity is determined by laser-plasma parameters. The electron trajectory is influenced by its position, energy and cavity electrostatic potential.展开更多
高速目标再入大气层或在临近空间飞行时,空气电离形成的等离子体鞘套和尾迹对目标的雷达散射特性会产生影响.为了研究不同模型尾迹流场及其电磁散射特性规律和相似性,以氧化铝球模型为研究对象,在弹道靶设备上开展了双尺度参数相同的条...高速目标再入大气层或在临近空间飞行时,空气电离形成的等离子体鞘套和尾迹对目标的雷达散射特性会产生影响.为了研究不同模型尾迹流场及其电磁散射特性规律和相似性,以氧化铝球模型为研究对象,在弹道靶设备上开展了双尺度参数相同的条件下高速球模型尾迹流场及其电磁散射相似性实验研究.由二级轻气炮发射模型,模型直径分别为8.0、10.0、12.0、15.0 mm,速度约6 km/s,靶室压力分别为6.3,5.0,4.2,3.3 k Pa,采用阴影照相系统测量模型激波脱体距离、电子密度测量系统测量模型尾迹的电子密度分布、X波段单站雷达系统测量在视角为40?的模型及流场的雷达散射截面(RCS)分布.实验结果表明:在速度不变、双尺度参数相同的条件下,随着模型尺寸的增加,激波脱体距离逐渐增加,激波脱体距离与模型直径之比近似相同;不同模型尾迹电子密度测量曲线的趋势和数量级一致,表明不同模型的尾迹流场适用于双缩尺律;不同尺寸模型尾迹的总体RCS与分布RCS均不相同,表明不同模型尾迹的电磁散射不适用于二元缩尺律;高速球模型全目标电磁散射能量分布在模型及其绕流区域、等离子体尾迹区域;高速球模型全目标电磁散射能量在模型及绕流场区域出现1个强散射中心,在模型湍流尾迹区域出现多个散射中心;高速球模型尾迹的RCS测量信号呈现随机性分布特性,幅度脉动和频率脉动均没有周期性;随着模型尺寸的增加,模型尾迹的总体RCS增加,尾迹脉动频率的变化范围减小.展开更多
The propagation of an intense laser pulse in an under-dense plasma induces a plasma wake that is suitable for the acceleration of electrons to relativistic energies. For an ultra-intense laser pulse which has a longit...The propagation of an intense laser pulse in an under-dense plasma induces a plasma wake that is suitable for the acceleration of electrons to relativistic energies. For an ultra-intense laser pulse which has a longitudinal size shorter than the plasma wavelength, λp, instead of a periodic plasma wave, a cavity free from cold plasma electrons, called a bubble, is formed behind the laser pulse. An intense charge separation electric field inside the moving bubble can capture the electrons at the base of the bubble and accelerate them with a narrow energy spread. In the nonlinear bubble regime, due to localized depletion at the front of the pulse during its propagation through the plasma, the phase shift between carrier waves and pulse envelope plays an important role in plasma response. The carrier–envelope phase(CEP) breaks down the symmetric transverse ponderomotive force of the laser pulse that makes the bubble structure unstable. Our studies using a series of two-dimensional(2D) particle-in-cell(PIC) simulations show that the frequency-chirped laser pulses are more effective in controlling the pulse depletion rate and consequently the effect of the CEP in the bubble regime. The results indicate that the utilization of a positively chirped laser pulse leads to an increase in rate of erosion of the leading edge of the pulse that rapidly results in the formation of a steep intensity gradient at the front of the pulse. A more unstable bubble structure, the self-injections in different positions, and high dark current are the results of using a positively chirped laser pulse. For a negatively chirped laser pulse, the pulse depletion process is compensated during the propagation of the pulse in plasma in such a way that results in a more stable bubble shape and therefore, a localized electron bunch is produced during the acceleration process. As a result, by the proper choice of chirping, one can tune the number of self-injected electrons, the size of accelerated bunch and its energy spectrum to the values required for practical applications.展开更多
A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived.The presented spheroid cavity model is more consistent than the previous spherical and ellips...A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived.The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal models and it explains the mono-energetic electron trajectory more accurately,especially at the relativistic region.The maximum energy of electrons is calculated and it is shown that the maximum energy of the spheroid model is less than that of the spherical model.The electron energy spectrum is also calculated and it is found that the energy distribution ratio of electrons △E/E for the spheroid model under the conditions reported here is half that of the spherical model and it is in good agreement with the experimental value in the same conditions.As a result,the quasi-mono-energetic electron output beam interacting with the laser plasma can be more appropriately described with this model.展开更多
Implementation of laser-plasma-based acceleration stages in user-oriented facilities requires the definition and deployment of appropriate diagnostic methodologies to monitor and control the acceleration process.An ov...Implementation of laser-plasma-based acceleration stages in user-oriented facilities requires the definition and deployment of appropriate diagnostic methodologies to monitor and control the acceleration process.An overview is given here of optical diagnostics for density measurement in laser-plasma acceleration stages,with emphasis on wellestablished and easily implemented approaches.Diagnostics for both neutral gas and free-electron number density are considered,highlighting real-time measurement capabilities.Optical interferometry,in its various configurations,from standard two-arm to more advanced common-path designs,is discussed,along with spectroscopic techniques such as Stark broadening and Raman scattering.A critical analysis of the diagnostics presented is given concerning their implementation in laser-plasma acceleration stages for the production of high-quality GeV electron bunches.展开更多
文摘Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generated from other methods such as periodic plasma wave field, spheroidal cavity regime and plasma channel guided acceleration. Trajectory of electron motion is described as hyperbolic, parabolic or elliptic paths. We find that the self-generated electron bunch has a smaller energy width and more effective gain in energy spectrum. Initial condition for the ellipsoidal cavity is determined by laser-plasma parameters. The electron trajectory is influenced by its position, energy and cavity electrostatic potential.
文摘高速目标再入大气层或在临近空间飞行时,空气电离形成的等离子体鞘套和尾迹对目标的雷达散射特性会产生影响.为了研究不同模型尾迹流场及其电磁散射特性规律和相似性,以氧化铝球模型为研究对象,在弹道靶设备上开展了双尺度参数相同的条件下高速球模型尾迹流场及其电磁散射相似性实验研究.由二级轻气炮发射模型,模型直径分别为8.0、10.0、12.0、15.0 mm,速度约6 km/s,靶室压力分别为6.3,5.0,4.2,3.3 k Pa,采用阴影照相系统测量模型激波脱体距离、电子密度测量系统测量模型尾迹的电子密度分布、X波段单站雷达系统测量在视角为40?的模型及流场的雷达散射截面(RCS)分布.实验结果表明:在速度不变、双尺度参数相同的条件下,随着模型尺寸的增加,激波脱体距离逐渐增加,激波脱体距离与模型直径之比近似相同;不同模型尾迹电子密度测量曲线的趋势和数量级一致,表明不同模型的尾迹流场适用于双缩尺律;不同尺寸模型尾迹的总体RCS与分布RCS均不相同,表明不同模型尾迹的电磁散射不适用于二元缩尺律;高速球模型全目标电磁散射能量分布在模型及其绕流区域、等离子体尾迹区域;高速球模型全目标电磁散射能量在模型及绕流场区域出现1个强散射中心,在模型湍流尾迹区域出现多个散射中心;高速球模型尾迹的RCS测量信号呈现随机性分布特性,幅度脉动和频率脉动均没有周期性;随着模型尺寸的增加,模型尾迹的总体RCS增加,尾迹脉动频率的变化范围减小.
文摘The propagation of an intense laser pulse in an under-dense plasma induces a plasma wake that is suitable for the acceleration of electrons to relativistic energies. For an ultra-intense laser pulse which has a longitudinal size shorter than the plasma wavelength, λp, instead of a periodic plasma wave, a cavity free from cold plasma electrons, called a bubble, is formed behind the laser pulse. An intense charge separation electric field inside the moving bubble can capture the electrons at the base of the bubble and accelerate them with a narrow energy spread. In the nonlinear bubble regime, due to localized depletion at the front of the pulse during its propagation through the plasma, the phase shift between carrier waves and pulse envelope plays an important role in plasma response. The carrier–envelope phase(CEP) breaks down the symmetric transverse ponderomotive force of the laser pulse that makes the bubble structure unstable. Our studies using a series of two-dimensional(2D) particle-in-cell(PIC) simulations show that the frequency-chirped laser pulses are more effective in controlling the pulse depletion rate and consequently the effect of the CEP in the bubble regime. The results indicate that the utilization of a positively chirped laser pulse leads to an increase in rate of erosion of the leading edge of the pulse that rapidly results in the formation of a steep intensity gradient at the front of the pulse. A more unstable bubble structure, the self-injections in different positions, and high dark current are the results of using a positively chirped laser pulse. For a negatively chirped laser pulse, the pulse depletion process is compensated during the propagation of the pulse in plasma in such a way that results in a more stable bubble shape and therefore, a localized electron bunch is produced during the acceleration process. As a result, by the proper choice of chirping, one can tune the number of self-injected electrons, the size of accelerated bunch and its energy spectrum to the values required for practical applications.
基金Project supported by the Research Deputy Office in the Islamic Azad University of Maragheh Branch
文摘A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived.The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal models and it explains the mono-energetic electron trajectory more accurately,especially at the relativistic region.The maximum energy of electrons is calculated and it is shown that the maximum energy of the spheroid model is less than that of the spherical model.The electron energy spectrum is also calculated and it is found that the energy distribution ratio of electrons △E/E for the spheroid model under the conditions reported here is half that of the spherical model and it is in good agreement with the experimental value in the same conditions.As a result,the quasi-mono-energetic electron output beam interacting with the laser plasma can be more appropriately described with this model.
基金support from the European Unions Horizon 2020 research and innovation program under Grant Agreement No.653782-EuPRAXIAthe MIUR-funded Italian research Network ELI-Italy
文摘Implementation of laser-plasma-based acceleration stages in user-oriented facilities requires the definition and deployment of appropriate diagnostic methodologies to monitor and control the acceleration process.An overview is given here of optical diagnostics for density measurement in laser-plasma acceleration stages,with emphasis on wellestablished and easily implemented approaches.Diagnostics for both neutral gas and free-electron number density are considered,highlighting real-time measurement capabilities.Optical interferometry,in its various configurations,from standard two-arm to more advanced common-path designs,is discussed,along with spectroscopic techniques such as Stark broadening and Raman scattering.A critical analysis of the diagnostics presented is given concerning their implementation in laser-plasma acceleration stages for the production of high-quality GeV electron bunches.