Carbon fiber reinforced silicon carbide-hafnium carbide(C/SiC-HfC)composite was prepared by precursor infiltration and pyrolysis process.Then,ablation behavior of C/SiC-HfC was evaluated in plasma wind tunnel.It was f...Carbon fiber reinforced silicon carbide-hafnium carbide(C/SiC-HfC)composite was prepared by precursor infiltration and pyrolysis process.Then,ablation behavior of C/SiC-HfC was evaluated in plasma wind tunnel.It was found that oxide layer formed during ablation significantly influenced the surface temperature.Formation of dense HfO2 SiO2 layer under low heat flux led to stable surface temperature.Silica(SiO2)on the surface was gradually consumed when heat flux increased,resulting in conversion of HfO2-SiO2 on the surface to HfO2.Converted HfO2 with high catalytic cofficient absorbed more energy,causing gradual increase in the surface temperature.Formed oxide layer was destroyed at high heat flux and high stagnation point pressure.After carbon fiber lost the protection of HfO2-SiO2 layer,it burned immediately,leading to surface temperature jump.展开更多
Silicon nitride ceramics were prepared by means of a hot-press sintering method. The ablation behavior was studied by plasma wind tunnel tests. The data suggested that, under low heat flux and stagnation pressure cond...Silicon nitride ceramics were prepared by means of a hot-press sintering method. The ablation behavior was studied by plasma wind tunnel tests. The data suggested that, under low heat flux and stagnation pressure conditions, the ablation process was controlled by the atomic oxidation of Si3N4, leading to the elimination of Si3N4. By contrast, the erosion was mainly produced by the decomposition of Si3N4under high heat flux and stagnation pressure conditions. Under these conditions, a fraction of Si phase, formed upon decomposition of Si3N4, was volatilized. The remained Si had melted due to high temperatures and scoured away from stagnation point area, generating mushroom-shaped samples.展开更多
Shock wave is a detriment in the development of supersonic aircrafts;it increases flow drag as well as surface heating from additional friction;it also initiates sonic boom on the ground which precludes supersonic jet...Shock wave is a detriment in the development of supersonic aircrafts;it increases flow drag as well as surface heating from additional friction;it also initiates sonic boom on the ground which precludes supersonic jetliner to fly overland. A shock wave mitigation technique is demonstrated by experiments conducted in a Mach 2.5 wind tunnel. Non-thermal air plasma generated symmetrically in front of a wind tunnel model and upstream of the shock, by on-board 60 Hz periodic electric arc discharge, works as a plasma deflector, it deflects incoming flow to transform the shock from a well-defined attached shock into a highly curved shock structure. In a sequence with increasing discharge intensity, the transformed curve shock increases shock angle and moves upstream to become detached with increasing standoff distance from the model. It becomes diffusive and disappears near the peak of the discharge. The flow deflection increases the equivalent cone angle of the model, which in essence, reduces the equivalent Mach number of the incoming flow, manifesting the reduction of the shock wave drag on the cone. When this equivalent cone angle exceeds a critical angle, the shock becomes detached and fades away. This shock wave mitigation technique helps drag reduction as well as eliminates sonic boom.展开更多
When the spacecraft flies much faster than the sound speed (~1200 km/h), the airflow disturbances deflected forward from the spacecraft cannot get away from the spacecraft and form a shock wave in front of it. Shock w...When the spacecraft flies much faster than the sound speed (~1200 km/h), the airflow disturbances deflected forward from the spacecraft cannot get away from the spacecraft and form a shock wave in front of it. Shock waves have been a detriment for the development of supersonic aircrafts, which have to overcome high wave drag and surface heating from additional friction. Shock wave also produces sonic booms. The noise issue raises environmental concerns, which have precluded routine supersonic flight over land. Therefore, mitigation of shock wave is essential to advance the development of supersonic aircrafts. A plasma mitigation technique is studied. A theory is presented to show that shock wave structure can be modified via flow deflection. Symmetrical deflection evades the need of exchanging the transverse momentum between the flow and the deflector. The analysis shows that the plasma generated in front of the model can effectively deflect the incoming flow. A non-thermal air plasma, generated by on-board 60 Hz periodic electric arc discharge in front of a wind tunnel model, was applied as a plasma deflector for shock wave mitigation technique. The experiment was conducted in a Mach 2.5 wind tunnel. The results show that the air plasma was generated symmetrically in front of the wind tunnel model. With increasing discharge intensity, the plasma deflector transforms the shock from a welldefined attached shock into a highly curved shock structure with increasing standoff distance from the model;this curved shock has increased shock angle and also appears in increasingly diffused form. In the decay of the discharge intensity, the shock front is first transformed back to a well-defined curve shock, which moves downstream to become a perturbed oblique shock;the baseline shock front then reappears as the discharge is reduced to low level again. The experimental observations confirm the theory. The steady of the incoming flow during the discharge cycle is manifested by the repeat of the baseline shock front.展开更多
基金The authors greatly acknowledge the financial support from the National Natural Science Foundation of China(Grant No.51972027).
文摘Carbon fiber reinforced silicon carbide-hafnium carbide(C/SiC-HfC)composite was prepared by precursor infiltration and pyrolysis process.Then,ablation behavior of C/SiC-HfC was evaluated in plasma wind tunnel.It was found that oxide layer formed during ablation significantly influenced the surface temperature.Formation of dense HfO2 SiO2 layer under low heat flux led to stable surface temperature.Silica(SiO2)on the surface was gradually consumed when heat flux increased,resulting in conversion of HfO2-SiO2 on the surface to HfO2.Converted HfO2 with high catalytic cofficient absorbed more energy,causing gradual increase in the surface temperature.Formed oxide layer was destroyed at high heat flux and high stagnation point pressure.After carbon fiber lost the protection of HfO2-SiO2 layer,it burned immediately,leading to surface temperature jump.
基金the National Natural Science Foundation of China(No.51632007)
文摘Silicon nitride ceramics were prepared by means of a hot-press sintering method. The ablation behavior was studied by plasma wind tunnel tests. The data suggested that, under low heat flux and stagnation pressure conditions, the ablation process was controlled by the atomic oxidation of Si3N4, leading to the elimination of Si3N4. By contrast, the erosion was mainly produced by the decomposition of Si3N4under high heat flux and stagnation pressure conditions. Under these conditions, a fraction of Si phase, formed upon decomposition of Si3N4, was volatilized. The remained Si had melted due to high temperatures and scoured away from stagnation point area, generating mushroom-shaped samples.
文摘Shock wave is a detriment in the development of supersonic aircrafts;it increases flow drag as well as surface heating from additional friction;it also initiates sonic boom on the ground which precludes supersonic jetliner to fly overland. A shock wave mitigation technique is demonstrated by experiments conducted in a Mach 2.5 wind tunnel. Non-thermal air plasma generated symmetrically in front of a wind tunnel model and upstream of the shock, by on-board 60 Hz periodic electric arc discharge, works as a plasma deflector, it deflects incoming flow to transform the shock from a well-defined attached shock into a highly curved shock structure. In a sequence with increasing discharge intensity, the transformed curve shock increases shock angle and moves upstream to become detached with increasing standoff distance from the model. It becomes diffusive and disappears near the peak of the discharge. The flow deflection increases the equivalent cone angle of the model, which in essence, reduces the equivalent Mach number of the incoming flow, manifesting the reduction of the shock wave drag on the cone. When this equivalent cone angle exceeds a critical angle, the shock becomes detached and fades away. This shock wave mitigation technique helps drag reduction as well as eliminates sonic boom.
文摘When the spacecraft flies much faster than the sound speed (~1200 km/h), the airflow disturbances deflected forward from the spacecraft cannot get away from the spacecraft and form a shock wave in front of it. Shock waves have been a detriment for the development of supersonic aircrafts, which have to overcome high wave drag and surface heating from additional friction. Shock wave also produces sonic booms. The noise issue raises environmental concerns, which have precluded routine supersonic flight over land. Therefore, mitigation of shock wave is essential to advance the development of supersonic aircrafts. A plasma mitigation technique is studied. A theory is presented to show that shock wave structure can be modified via flow deflection. Symmetrical deflection evades the need of exchanging the transverse momentum between the flow and the deflector. The analysis shows that the plasma generated in front of the model can effectively deflect the incoming flow. A non-thermal air plasma, generated by on-board 60 Hz periodic electric arc discharge in front of a wind tunnel model, was applied as a plasma deflector for shock wave mitigation technique. The experiment was conducted in a Mach 2.5 wind tunnel. The results show that the air plasma was generated symmetrically in front of the wind tunnel model. With increasing discharge intensity, the plasma deflector transforms the shock from a welldefined attached shock into a highly curved shock structure with increasing standoff distance from the model;this curved shock has increased shock angle and also appears in increasingly diffused form. In the decay of the discharge intensity, the shock front is first transformed back to a well-defined curve shock, which moves downstream to become a perturbed oblique shock;the baseline shock front then reappears as the discharge is reduced to low level again. The experimental observations confirm the theory. The steady of the incoming flow during the discharge cycle is manifested by the repeat of the baseline shock front.