Lithiumization of the vacuum vessel wall of the Aditya tokamak using a lithium rod exposed to glow discharge cleaning plasma has been done to understand its effect on plasma performance. After the Li-coating, an incre...Lithiumization of the vacuum vessel wall of the Aditya tokamak using a lithium rod exposed to glow discharge cleaning plasma has been done to understand its effect on plasma performance. After the Li-coating, an increment of ~100 eV in plasma electron temperature has been observed in most of the discharges compared to discharges without Li coating, and the shot reproducibility is considerably improved. Detailed studies of impurity behaviour and hydrogen recycling are made in the Li coated discharges by observing spectral lines of hydrogen, carbon, and oxygen in the visible region using optical fiber, an interference filter, and PMT based systems. A large reduction in O I signal (up to ~40% to 50%) and a 20% to 30% decrease of Ha signal indicate significant reduction of wall recycling. Furthermore, VUV emissions from O V and Fe XV monitored by a grazing incidence monochromator also show the reduction. Lower Fe XV emission indicates the declined impurity penetration to the core plasma in the Li coated discharges. Significant increase of the particle and energy confinement times and the reduction of Zeff of the plasma certainly indicate the improved plasma parameters in the Aditya tokamak after lithium wall conditioning.展开更多
The high magnetic field helicon experiment system is a helicon wave plasma(HWP)source device in a high axial magnetic field(B0)developed for plasma–wall interactions studies for fusion reactors.This HWP was reali...The high magnetic field helicon experiment system is a helicon wave plasma(HWP)source device in a high axial magnetic field(B0)developed for plasma–wall interactions studies for fusion reactors.This HWP was realized at low pressure(5×10^-3-10 Pa)and a RF(radio frequency,13.56 MHz)power(maximum power of 2 k W)using an internal right helical antenna(5 cm in diameter by 18 cm long)with a maximum B0of 6300 G.Ar HWP with electron density~10^18–10^20m^-3 and electron temperature~4–7 e V was produced at high B0 of 5100 G,with an RF power of 1500 W.Maximum Ar^+ion flux of 7.8×10^23m^-2s^-1 with a bright blue core plasma was obtained at a high B0 of 2700 G and an RF power of 1500 W without bias.Plasma energy and mass spectrometer studies indicate that Ar^+ ion-beams of 40.1 eV are formed,which are supersonic(~3.1cs).The effect of Ar HWP discharge cleaning on the wall conditioning are investigated by using the mass spectrometry.And the consequent plasma parameters will result in favorable wall conditioning with a removal rate of 1.1×10^24N2/m^2 h.展开更多
The steady fusion plasma operation is constrained by tungsten(W)material sputtering issue in the EAST tokamak.In this work,the suppression of W sputtering source has been studied by advanced wall conditionings.It is a...The steady fusion plasma operation is constrained by tungsten(W)material sputtering issue in the EAST tokamak.In this work,the suppression of W sputtering source has been studied by advanced wall conditionings.It is also concluded that the W sputtering yield becomes more with increasing carbon(C)content in the main deuterium(D)plasma.In EAST,the integrated use of discharge cleanings and lithium(Li)coating has positive effects on the suppression of W sputtering source.In the plasma recovery experiments,it is suggested that the W intensity is reduced by approximately 60%with the help of~35 h Ion Cyclotron Radio Frequency Discharge Cleaning(ICRF-DC)and~40 g Li coating after vacuum failure.The first wall covered by Li film could be relieved from the bombardment of energetic particles,and the impurity in the vessel would be removed through the particle induced desorption and isotope exchange during the discharge cleanings.In general,the sputtering yield of W would decrease from the source,on the bias of the improvement of wall condition and the mitigation of plasmawall interaction process.It lays important base of the achievement of high-parameter and longpulse plasma operation in EAST.The experiences also would be constructive for us to promote the understanding of relevant physics and basis towards the ITER-like condition.展开更多
A kinetic simulation model has been employed to study the properties of an electronegative magnetized plasma sheath assuming the cut-off distribution of electrons and negative ions.The fundamental kinetic Bohm conditi...A kinetic simulation model has been employed to study the properties of an electronegative magnetized plasma sheath assuming the cut-off distribution of electrons and negative ions.The fundamental kinetic Bohm condition for the electronegative magnetized plasma has paramount importance for the formation of a stationary plasma sheath near the material wall.The presence of an oblique magnetic field in an electronegative plasma affects the ion distribution at the plasma injection side and at the wall.The temperature profile of negative charged particles has a non-uniform distribution,which determines the energy flow towards the wall.展开更多
An impurity powder dropper was installed in the 21 st campaign of the Large Helical Device experiment(Oct.2019–Feb.2020)under a collaboration between the National Institute for Fusion Science and the Princeton Plasma...An impurity powder dropper was installed in the 21 st campaign of the Large Helical Device experiment(Oct.2019–Feb.2020)under a collaboration between the National Institute for Fusion Science and the Princeton Plasma Physics Laboratory for the purposes of real-time wall conditioning and edge plasma control.In order to assess the effective injection of the impurity powders,spectroscopic diagnostics were applied to observe line emission from the injected impurity.Thus,extreme-ultraviolet(EUV)and vacuum-ultraviolet(VUV)emission spectra were analyzed to summarize observable impurity lines with B and BN powder injection.Emission lines released from B and N ions were identified in the EUV wavelength range of 5–300Ameasured using two grazing incidence flat-field EUV spectrometers and in the VUV wavelength range of 300–2400Ameasured using three normal incidence 20 cm VUV spectrometers.BI–BV and NIII–NVII emission lines were identified in the discharges with the B and BN powder injection,respectively.Useful B and N emission lines which have large intensities and are isolated from other lines were successfully identified as follows:BI(1825.89,1826.40)A(blended),BII 1362.46A,BIII(677.00,677.14,677.16)A(blended),BIV 60.31A,BV 48.59A,NIII(989.79,991.51,991.58)A(blended),NIV765.15A,NV(209.27,209.31)A(blended),NVI 1896.80A,and NVII 24.78A.Applications of the line identifications to the advanced spectroscopic diagnostics were demonstrated,such as the vertical profile measurements for the BV and NVII lines using a space-resolved EUV spectrometer and the ion temperature measurement for the BII line using a normal incidence 3 m VUV spectrometer.展开更多
As the startup phase of HL-2A operation and the first divertor tokamak device in China, it is important to identify the species of impurity, estimate the concentration of impurities and compare the different behaviors...As the startup phase of HL-2A operation and the first divertor tokamak device in China, it is important to identify the species of impurity, estimate the concentration of impurities and compare the different behaviors of radiation in limiter and divertor configurationt. In startup phase of HL-2A, glowing discharge cleaning (GDC) is used as a conventional wall conditioning technology and titanium gettering is used occasionally in closed divertor chamber during SN configuration discharges phase.展开更多
Post-mortem methods cannot fulfill the requirement of monitoring the lifetime of the plasma facing components (PFC) and measuring the tritium inventory for the safety evaluation. Laserinduced breakdown spectroscopy ...Post-mortem methods cannot fulfill the requirement of monitoring the lifetime of the plasma facing components (PFC) and measuring the tritium inventory for the safety evaluation. Laserinduced breakdown spectroscopy (LIBS) is proposed as a promising method for the in situ study of fuel retention and impurity deposition in a tokamak. In this study, an in situ LIBS system was successfully established on EAST to investigate fuel retention and impurity deposition on the first wall without the need of removal tiles between plasma discharges. Spectral lines of D, H and impurities (Mo, Li, Si ) in laser-induced plasma were observed and identified within the wavelength range of 500-700 nm. Qualitative measurements such as thickness of the deposition layers, element depth profile and fuel retention on the wall are obtained by means of in situ LIBS. The results demonstrated the potential applications of LIBS for in situ characterization of fuel retention and co-deposition on the first wall of EAST.展开更多
The divertor configuration was successfully formed and the siliconization as a wall conditioning was first achieved on HL-2A tokamak experimentally in 2004. The divertor configuration is reconstructed by the use of th...The divertor configuration was successfully formed and the siliconization as a wall conditioning was first achieved on HL-2A tokamak experimentally in 2004. The divertor configuration is reconstructed by the use of the CFC code. Impurity as an important issue is investigated in the experiments with divertor configuration and wall conditioning. Impurities dramatically decrease after both the divertor configuration is formed and silicon is coated on the surface of the vacuum vessel.展开更多
HL-2A tokamak with two close divertors has been operated since 2003. In the experimental campaign of 2004 the divertor configuration has been successfully formed and the sillconization as a wall conditioning has been ...HL-2A tokamak with two close divertors has been operated since 2003. In the experimental campaign of 2004 the divertor configuration has been successfully formed and the sillconization as a wall conditioning has been firstly done in this device. The divertor configuration can be reconstructed by the CFc code. Impurity behavior has been investigated during the experiment with divertor configuration and wall conditioning. The reduction of impurity is clear under both conditions of divertor configuration and siliconization.展开更多
由于低质量数材料不可接受的高腐蚀率以及氚共沉积的问题,未来聚变堆中更希望使用全钨壁。由于钨在芯部的高辐射冷却率,芯部的钨杂质浓度需要限制在非常低的水平(约10^(-5))。中国聚变工程试验堆(China Fusion Engineering Test Reactor...由于低质量数材料不可接受的高腐蚀率以及氚共沉积的问题,未来聚变堆中更希望使用全钨壁。由于钨在芯部的高辐射冷却率,芯部的钨杂质浓度需要限制在非常低的水平(约10^(-5))。中国聚变工程试验堆(China Fusion Engineering Test Reactor,CFETR)要求其高功率稳态运行,全钨壁是优先考虑的方案。为了估计全钨壁CFETR的芯部钨杂质浓度,用边界等离子体物理模拟软件SOLPS(Scrape-off Layer Plasma Simulation)对下单零偏滤器位形不同氖气(Ne)辐射杂质注入速率下模拟得到边界等离子体背景,再利用蒙特卡罗杂质输运程序DIVIMP(DIVertor and IMPurity)对钨杂质的输运进行了模拟。当Ne注入速率较低、靶板温度仍然较高时,即使仅考虑靶板为钨材料,芯部钨杂质浓度依然过高。当外靶板峰值温度降低至约10 eV时,钨靶板对芯部钨杂质浓度的贡献降至可接受的水平;但当包含主等离子体室壁的贡献时,芯部钨杂质浓度仍然达到10^(-4)的水平。因此当Ne杂质注入速率较高时,过高的芯部钨杂质浓度主要来源于主等离子体室壁。未来的工作中需要进一步关注钨壁对芯部钨杂质浓度的影响。展开更多
文摘Lithiumization of the vacuum vessel wall of the Aditya tokamak using a lithium rod exposed to glow discharge cleaning plasma has been done to understand its effect on plasma performance. After the Li-coating, an increment of ~100 eV in plasma electron temperature has been observed in most of the discharges compared to discharges without Li coating, and the shot reproducibility is considerably improved. Detailed studies of impurity behaviour and hydrogen recycling are made in the Li coated discharges by observing spectral lines of hydrogen, carbon, and oxygen in the visible region using optical fiber, an interference filter, and PMT based systems. A large reduction in O I signal (up to ~40% to 50%) and a 20% to 30% decrease of Ha signal indicate significant reduction of wall recycling. Furthermore, VUV emissions from O V and Fe XV monitored by a grazing incidence monochromator also show the reduction. Lower Fe XV emission indicates the declined impurity penetration to the core plasma in the Li coated discharges. Significant increase of the particle and energy confinement times and the reduction of Zeff of the plasma certainly indicate the improved plasma parameters in the Aditya tokamak after lithium wall conditioning.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Grant Nos.2014GB106005 and 2010GB106000)National Natural Science Foundation of China(Nos.11505123 11435009 11375126)a Project funded by China Postdoctoral Science Foundation(No.156455)
文摘The high magnetic field helicon experiment system is a helicon wave plasma(HWP)source device in a high axial magnetic field(B0)developed for plasma–wall interactions studies for fusion reactors.This HWP was realized at low pressure(5×10^-3-10 Pa)and a RF(radio frequency,13.56 MHz)power(maximum power of 2 k W)using an internal right helical antenna(5 cm in diameter by 18 cm long)with a maximum B0of 6300 G.Ar HWP with electron density~10^18–10^20m^-3 and electron temperature~4–7 e V was produced at high B0 of 5100 G,with an RF power of 1500 W.Maximum Ar^+ion flux of 7.8×10^23m^-2s^-1 with a bright blue core plasma was obtained at a high B0 of 2700 G and an RF power of 1500 W without bias.Plasma energy and mass spectrometer studies indicate that Ar^+ ion-beams of 40.1 eV are formed,which are supersonic(~3.1cs).The effect of Ar HWP discharge cleaning on the wall conditioning are investigated by using the mass spectrometry.And the consequent plasma parameters will result in favorable wall conditioning with a removal rate of 1.1×10^24N2/m^2 h.
基金supported by the National Key Research and Development Program of China(Nos.2017YFE0301100 and 2017YFA0402500)National Natural Science Foundation of China(No.11605237)the Users with Excellence Program of Hefei Science Center CAS(2020HSC-UE010)。
文摘The steady fusion plasma operation is constrained by tungsten(W)material sputtering issue in the EAST tokamak.In this work,the suppression of W sputtering source has been studied by advanced wall conditionings.It is also concluded that the W sputtering yield becomes more with increasing carbon(C)content in the main deuterium(D)plasma.In EAST,the integrated use of discharge cleanings and lithium(Li)coating has positive effects on the suppression of W sputtering source.In the plasma recovery experiments,it is suggested that the W intensity is reduced by approximately 60%with the help of~35 h Ion Cyclotron Radio Frequency Discharge Cleaning(ICRF-DC)and~40 g Li coating after vacuum failure.The first wall covered by Li film could be relieved from the bombardment of energetic particles,and the impurity in the vessel would be removed through the particle induced desorption and isotope exchange during the discharge cleanings.In general,the sputtering yield of W would decrease from the source,on the bias of the improvement of wall condition and the mitigation of plasmawall interaction process.It lays important base of the achievement of high-parameter and longpulse plasma operation in EAST.The experiences also would be constructive for us to promote the understanding of relevant physics and basis towards the ITER-like condition.
基金Suresh Basnet would like to acknowledge the University Grants Commission,Nepal for the PhD fellowship.
文摘A kinetic simulation model has been employed to study the properties of an electronegative magnetized plasma sheath assuming the cut-off distribution of electrons and negative ions.The fundamental kinetic Bohm condition for the electronegative magnetized plasma has paramount importance for the formation of a stationary plasma sheath near the material wall.The presence of an oblique magnetic field in an electronegative plasma affects the ion distribution at the plasma injection side and at the wall.The temperature profile of negative charged particles has a non-uniform distribution,which determines the energy flow towards the wall.
基金supported by the Post-CUP programJSPSCAS Bilateral Joint Research Projects,‘Control of wall recycling on metallic plasma facing materials in fusionreactor,’2019–2022,(No.GJHZ201984)+2 种基金US Department of Energy(No.DE-AC02-09CH11466)with Princeton Universitythe LHD project financial support(Nos.ULPP010,ULFF022)JSPS KAKENHI(Nos.17K14426,20K03896)。
文摘An impurity powder dropper was installed in the 21 st campaign of the Large Helical Device experiment(Oct.2019–Feb.2020)under a collaboration between the National Institute for Fusion Science and the Princeton Plasma Physics Laboratory for the purposes of real-time wall conditioning and edge plasma control.In order to assess the effective injection of the impurity powders,spectroscopic diagnostics were applied to observe line emission from the injected impurity.Thus,extreme-ultraviolet(EUV)and vacuum-ultraviolet(VUV)emission spectra were analyzed to summarize observable impurity lines with B and BN powder injection.Emission lines released from B and N ions were identified in the EUV wavelength range of 5–300Ameasured using two grazing incidence flat-field EUV spectrometers and in the VUV wavelength range of 300–2400Ameasured using three normal incidence 20 cm VUV spectrometers.BI–BV and NIII–NVII emission lines were identified in the discharges with the B and BN powder injection,respectively.Useful B and N emission lines which have large intensities and are isolated from other lines were successfully identified as follows:BI(1825.89,1826.40)A(blended),BII 1362.46A,BIII(677.00,677.14,677.16)A(blended),BIV 60.31A,BV 48.59A,NIII(989.79,991.51,991.58)A(blended),NIV765.15A,NV(209.27,209.31)A(blended),NVI 1896.80A,and NVII 24.78A.Applications of the line identifications to the advanced spectroscopic diagnostics were demonstrated,such as the vertical profile measurements for the BV and NVII lines using a space-resolved EUV spectrometer and the ion temperature measurement for the BII line using a normal incidence 3 m VUV spectrometer.
文摘As the startup phase of HL-2A operation and the first divertor tokamak device in China, it is important to identify the species of impurity, estimate the concentration of impurities and compare the different behaviors of radiation in limiter and divertor configurationt. In startup phase of HL-2A, glowing discharge cleaning (GDC) is used as a conventional wall conditioning technology and titanium gettering is used occasionally in closed divertor chamber during SN configuration discharges phase.
基金Supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2013GB105002,2015GB109001,and 2013GB109005)National Natural Science Foundation of China(Nos.11575243,11605238,11605023)+1 种基金Chinesisch-Deutsches Forschungs Project(GZ765)Korea Research Council of Fundamental Science and Technology(KRCF)under the international collaboration&research in Asian countries(PG1314)
文摘Post-mortem methods cannot fulfill the requirement of monitoring the lifetime of the plasma facing components (PFC) and measuring the tritium inventory for the safety evaluation. Laserinduced breakdown spectroscopy (LIBS) is proposed as a promising method for the in situ study of fuel retention and impurity deposition in a tokamak. In this study, an in situ LIBS system was successfully established on EAST to investigate fuel retention and impurity deposition on the first wall without the need of removal tiles between plasma discharges. Spectral lines of D, H and impurities (Mo, Li, Si ) in laser-induced plasma were observed and identified within the wavelength range of 500-700 nm. Qualitative measurements such as thickness of the deposition layers, element depth profile and fuel retention on the wall are obtained by means of in situ LIBS. The results demonstrated the potential applications of LIBS for in situ characterization of fuel retention and co-deposition on the first wall of EAST.
基金Project supported by the National Natural Science Foundation of China (Grant No 10475022).Acknowledgment The aut, hors would like to thank all of our colleagues working on HL-2A, particularly LU J, LU P, FU B Z and LU0 C W for their assistance in the experiment on HL-2A.
文摘The divertor configuration was successfully formed and the siliconization as a wall conditioning was first achieved on HL-2A tokamak experimentally in 2004. The divertor configuration is reconstructed by the use of the CFC code. Impurity as an important issue is investigated in the experiments with divertor configuration and wall conditioning. Impurities dramatically decrease after both the divertor configuration is formed and silicon is coated on the surface of the vacuum vessel.
基金supported by the National Natural Science foundation of china(No.10475022)supported in part by the JSPS-CAS Core University Program in the Field of Plasma and Nuclear Fusion
文摘HL-2A tokamak with two close divertors has been operated since 2003. In the experimental campaign of 2004 the divertor configuration has been successfully formed and the sillconization as a wall conditioning has been firstly done in this device. The divertor configuration can be reconstructed by the CFc code. Impurity behavior has been investigated during the experiment with divertor configuration and wall conditioning. The reduction of impurity is clear under both conditions of divertor configuration and siliconization.