Alloy powders including Ni60, WC, CrC, and TiC with different mass ratios were deposited on medium carbon low alloy steel by plasma welding. Through the experiments, the optimal alloy powder reinforcing cutter tool su...Alloy powders including Ni60, WC, CrC, and TiC with different mass ratios were deposited on medium carbon low alloy steel by plasma welding. Through the experiments, the optimal alloy powder reinforcing cutter tool surface properties were discovered. The wear resistance properties were investigated on the impact abrasive wear tester. The experimental results show that in terms of microstructure, there exists the shape of herringbone, spider mesh, broken flower structures in coatings. In addition, fusion area of four specimens surfacing welding layer displays a large number of acicular martensite with a small amount of austenite. The coating mainly consists of Ni-Cr-Fe austenitic phase and the other precipitates. TiC density is smaller, its content is less in alloy powder, in the process of surfacing welding, TiC is melted fully, which is mainly distributed in surface layer and middle layer of hard facing layer. The content of TiC gradually reduces from surface layer of hard facing layer to the fusion area. Compared to TiC, the density of tungsten carbide and chromium carbide is larger, there exist tungsten carbide and chromium carbide particles, which are not completely melted near the fusion area. The micro-hardness presents gradient change from the fusion area to the surface layer of hard facing layer, and the hardness of the middle layer is slightly lower than that of the fusion area, and the hardness increases near the surface layer.展开更多
A wear-resistant (Cr, Fe)7C3/γ-Fe in situ ceramal composite coating was fabricated on the substrate of 0.45wt%C carbon steel by a plasma-transferred arc cladding process using the Fe-Cr-C elemental powder blends. T...A wear-resistant (Cr, Fe)7C3/γ-Fe in situ ceramal composite coating was fabricated on the substrate of 0.45wt%C carbon steel by a plasma-transferred arc cladding process using the Fe-Cr-C elemental powder blends. The microstructure, microhardness, and dry-sliding wear resistance of the coating were evaluated. The results indicate that the microstructure of the coating, which was composed of (Cr, Fe)7C3 primary phase uniformly distributed in the γ-Fe, and the (Cr, Fe)7C3 eutectic matrix was metallurgically bonded to the 0.45wt%C carbon steel substrate. From substrate to coating, the microstructure of the coating exhibited an evident epitaxial growth character. The coating, indehiscent and tack-free, had high hardness and appropriate gradient. It had excellent wear resistance under the dry sliding wear test condition.展开更多
基金Funded by the National Science and Technology Support Project(2006BAK02B01-02)
文摘Alloy powders including Ni60, WC, CrC, and TiC with different mass ratios were deposited on medium carbon low alloy steel by plasma welding. Through the experiments, the optimal alloy powder reinforcing cutter tool surface properties were discovered. The wear resistance properties were investigated on the impact abrasive wear tester. The experimental results show that in terms of microstructure, there exists the shape of herringbone, spider mesh, broken flower structures in coatings. In addition, fusion area of four specimens surfacing welding layer displays a large number of acicular martensite with a small amount of austenite. The coating mainly consists of Ni-Cr-Fe austenitic phase and the other precipitates. TiC density is smaller, its content is less in alloy powder, in the process of surfacing welding, TiC is melted fully, which is mainly distributed in surface layer and middle layer of hard facing layer. The content of TiC gradually reduces from surface layer of hard facing layer to the fusion area. Compared to TiC, the density of tungsten carbide and chromium carbide is larger, there exist tungsten carbide and chromium carbide particles, which are not completely melted near the fusion area. The micro-hardness presents gradient change from the fusion area to the surface layer of hard facing layer, and the hardness of the middle layer is slightly lower than that of the fusion area, and the hardness increases near the surface layer.
文摘A wear-resistant (Cr, Fe)7C3/γ-Fe in situ ceramal composite coating was fabricated on the substrate of 0.45wt%C carbon steel by a plasma-transferred arc cladding process using the Fe-Cr-C elemental powder blends. The microstructure, microhardness, and dry-sliding wear resistance of the coating were evaluated. The results indicate that the microstructure of the coating, which was composed of (Cr, Fe)7C3 primary phase uniformly distributed in the γ-Fe, and the (Cr, Fe)7C3 eutectic matrix was metallurgically bonded to the 0.45wt%C carbon steel substrate. From substrate to coating, the microstructure of the coating exhibited an evident epitaxial growth character. The coating, indehiscent and tack-free, had high hardness and appropriate gradient. It had excellent wear resistance under the dry sliding wear test condition.