Intensive collisions between electrons and neutral particles in partially ionized plasmas generated in atmospheric/sub-atmospheric pressure environments can sufficiently affect the propagation characteristics of elect...Intensive collisions between electrons and neutral particles in partially ionized plasmas generated in atmospheric/sub-atmospheric pressure environments can sufficiently affect the propagation characteristics of electromagnetic waves, particularly in the sub-wavelength regime. To investigate the collisional effect in such plasmas, we introduce a simplified plasma slab model with a thickness on the order of the wavelength of the incident electromagnetic wave. The scattering matrix method (SMM) is applied to solve the wave equation in the plasma slab with significant nonuniformity. Results show that the collisions between the electrons and the neutral particles, as well as the incident angle and the plasma thickness, can disturb the transmission and reduce reflection significantly.展开更多
A plasma-based stable,ultra-wideband electromagnetic(EM) wave absorber structure is studied in this paper for stealth applications.The stability is maintained by a multi-layer structure with several plasma layers an...A plasma-based stable,ultra-wideband electromagnetic(EM) wave absorber structure is studied in this paper for stealth applications.The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately.The plasma in each plasma layer is designed to be uniform,whereas it has a discrete nonuniform distribution from the overall view of the structure.The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption.A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers,by which the wave absorption range is extended to the ultra-wideband.Then,the scattering matrix method(SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure.In the simulation,the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case.Then,the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail,verifying the EM wave absorption performance of the absorber.The proposed structure and model are expected to be superior in some realistic applications,such as supersonic aircraft.展开更多
为改善传统方法分析旋转对称涂覆导体电磁散射问题的效率,提出了一种高效分析方法.该方法在介质表面建立电磁流混合场积分方程(Electric and Magnetic Current Combined Field Integral Equation,JMCFIE),在导体表面建立混合场积分方程(...为改善传统方法分析旋转对称涂覆导体电磁散射问题的效率,提出了一种高效分析方法.该方法在介质表面建立电磁流混合场积分方程(Electric and Magnetic Current Combined Field Integral Equation,JMCFIE),在导体表面建立混合场积分方程(Combined Field Integral Equation,CFIE),利用了旋转对称体在空间上的旋转周期性,只需要对表面的母线进行剖分,具有未知量少且阻抗矩阵条件数好的特点.根据等效原理与边界条件推导了JMCFIE-CFIE方程,并与传统的PMCHW-CFIE方法对比了求解效率.数值算例表明该方法能明显改善方程的收敛性.展开更多
This paper is concerned with the fast iterative solution of linear systems arising from finite difference discretizations in electromagnetics. The sweeping preconditioner with moving perfectly matched layers previousl...This paper is concerned with the fast iterative solution of linear systems arising from finite difference discretizations in electromagnetics. The sweeping preconditioner with moving perfectly matched layers previously developed for the Helmholtz equation is adapted for the popular Yee grid scheme for wave propagation in inhomogeneous, anisotropic media. Preliminary numerical results are presented for typical examples.展开更多
基金supported by National Natural Science Foundation of China (Nos. 41674165, 11405038)the China Postdoctoral Science Foundation (No. 2015M570283)
文摘Intensive collisions between electrons and neutral particles in partially ionized plasmas generated in atmospheric/sub-atmospheric pressure environments can sufficiently affect the propagation characteristics of electromagnetic waves, particularly in the sub-wavelength regime. To investigate the collisional effect in such plasmas, we introduce a simplified plasma slab model with a thickness on the order of the wavelength of the incident electromagnetic wave. The scattering matrix method (SMM) is applied to solve the wave equation in the plasma slab with significant nonuniformity. Results show that the collisions between the electrons and the neutral particles, as well as the incident angle and the plasma thickness, can disturb the transmission and reduce reflection significantly.
基金supported in part by the National Basic Research Program of China (grant no.2014CB340205)in part by the Science and Technology on Space Physics Laboratory Fundsin part by the Fundamental Research Funds for the Central Universities (20101156180)
文摘A plasma-based stable,ultra-wideband electromagnetic(EM) wave absorber structure is studied in this paper for stealth applications.The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately.The plasma in each plasma layer is designed to be uniform,whereas it has a discrete nonuniform distribution from the overall view of the structure.The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption.A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers,by which the wave absorption range is extended to the ultra-wideband.Then,the scattering matrix method(SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure.In the simulation,the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case.Then,the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail,verifying the EM wave absorption performance of the absorber.The proposed structure and model are expected to be superior in some realistic applications,such as supersonic aircraft.
文摘为改善传统方法分析旋转对称涂覆导体电磁散射问题的效率,提出了一种高效分析方法.该方法在介质表面建立电磁流混合场积分方程(Electric and Magnetic Current Combined Field Integral Equation,JMCFIE),在导体表面建立混合场积分方程(Combined Field Integral Equation,CFIE),利用了旋转对称体在空间上的旋转周期性,只需要对表面的母线进行剖分,具有未知量少且阻抗矩阵条件数好的特点.根据等效原理与边界条件推导了JMCFIE-CFIE方程,并与传统的PMCHW-CFIE方法对比了求解效率.数值算例表明该方法能明显改善方程的收敛性.
文摘This paper is concerned with the fast iterative solution of linear systems arising from finite difference discretizations in electromagnetics. The sweeping preconditioner with moving perfectly matched layers previously developed for the Helmholtz equation is adapted for the popular Yee grid scheme for wave propagation in inhomogeneous, anisotropic media. Preliminary numerical results are presented for typical examples.