A surface plasmon resonance imaging(SPRI)system was developed for the discrimination of proteins on a gold surface.As a label-free and high-throughput technique,SPRI enables simultaneously monitoring of the biomolecul...A surface plasmon resonance imaging(SPRI)system was developed for the discrimination of proteins on a gold surface.As a label-free and high-throughput technique,SPRI enables simultaneously monitoring of the biomolecular interactions at low concentrations.We used SPRI as a label-free and parallel method to detect different proteins based on protein microarray.Bovine Serum Albumin(BSA),Casein and Immunoglobulin G(IgG)were immobilized onto the Au surface of a gold-coated glass chip as spots forming a 6×6 matrix.These proteins can be discriminated directly by changing the incident angle of light.Excellent reproducibility for label-free detection of protein molecules was achieved.This SPRI platform represents a simple and robust method for performing high-sensitivity detection of protein microarray.展开更多
We report direct nanoscale imaging of ultrafast plasmon in a gold dolmen nanostructure excited with the 7is laser pulses by combining the interferometric time-resolved technology with the three-photon photoemission el...We report direct nanoscale imaging of ultrafast plasmon in a gold dolmen nanostructure excited with the 7is laser pulses by combining the interferometric time-resolved technology with the three-photon photoemission electron microscopy (PEEM). The interferometric time-resolved traces show that the plasmon mode beating pattern appears at the ends of the dimer slabs in the dolmen nanostructure as a result of coherent superposition of multiple localized surface plasmon modes induced by broad bandwidth of the ultrafast laser pulses. The PEEM measurement further discloses that in-phase of the oscillation field of two neighbor defects are surprisingly observed, which is attributed to the plasmon coupling between them. Furthermore, the control of the temporal delay between the pump and probe laser pluses could be utilized for manipulation of the near-field distribution. These findings deepen our understanding of ultrafast plasmon dynamics in a complex nanosystem.展开更多
We conduct in-situ near-field imaging of propagating and localized plasmons(cavity and dipole modes) in graphene nano-resonator. Compared with propagating graphene plasmons, the localized modes show twofold near-fie...We conduct in-situ near-field imaging of propagating and localized plasmons(cavity and dipole modes) in graphene nano-resonator. Compared with propagating graphene plasmons, the localized modes show twofold near-field amplitude and high volume confining ability(- 10^6). The cavity resonance and dipole mode of graphene plasmons can be effectively controlled through optical method. Furthermore, our numerical simulation shows quantitative agreement with experimental measurements. The results provide insights into the nature of localized graphene plasmons and demonstrate a new way to study the localization of polaritons in Van der Waals materials.展开更多
There is an increasing demand for advanced optical imaging techniques that can detect and resolve nanosize objects at a spatial resolution below the optical diffraction limit, especially in three-dimensional (3D) ce...There is an increasing demand for advanced optical imaging techniques that can detect and resolve nanosize objects at a spatial resolution below the optical diffraction limit, especially in three-dimensional (3D) cellular environments. In this study, using a polarization-activated localization scheme based on the orientation-dependent properties of anisotropic plasmonic metal nanoparticles (MNPs), "photoswitchable" imaging of single gold nanorods (AuNRs) was accomplished not only in two dimensions but also in three dimensions. Moreover, the Rayleigh scattering background arising from the congested subcellular structures was efficiently suppressed. Thus, we obtained the 3D distributions of both the position and the orientation of the AuNRs inside the cells and investigated their intemalization kinetics. To our knowledge, this is the first demonstration of the confocal-like 3D imaging of non-fluorescence nanoparticles with a high resolution and almost zero background. This technique is easy to implement and should greatly facilitate MNP studies and applications in biomedicine and biology.展开更多
The review summaries our achievements in optical,electrochemical,as well as mass spectrometry analysis and imaging with high sensitivity,specificity,and spatiotemporal resolution.We promoted the plasmonic imaging syst...The review summaries our achievements in optical,electrochemical,as well as mass spectrometry analysis and imaging with high sensitivity,specificity,and spatiotemporal resolution.We promoted the plasmonic imaging system,and developed ultra-sensitive plasmonic nanoprobes for the tracking of single molecules in single living cells,as well as plasmonic nanocatalysts for highly efficient energy conversion.In addition,we contributed a lot in electrogenerated chemiluminescence(ECL)analysis and imaging.Pioneering works including localized surface plasmon resonance(LSPR)enhanced ECL,ECL ratiometric detection,BPE based ECL system,multi-color ECL sensing as well as super-resolved ECL imaging have been initiated by our group.Furthermore,we also dedicated in nanopipette based electrochemical analysis in single living cells,as well as ESI-MS analysis on short time scale.展开更多
基金Supported by the National Foundation of High Technology of China(2006AA020701 and 2006AA020803)National Program on Key Basic Research Projects 973 of China(2006CB705700)+1 种基金the Nature Science Foundation of Zhejiang Province(2006C21G3210005)Tsinghua-Yuyuan Medicine Foundation(40000510B).
文摘A surface plasmon resonance imaging(SPRI)system was developed for the discrimination of proteins on a gold surface.As a label-free and high-throughput technique,SPRI enables simultaneously monitoring of the biomolecular interactions at low concentrations.We used SPRI as a label-free and parallel method to detect different proteins based on protein microarray.Bovine Serum Albumin(BSA),Casein and Immunoglobulin G(IgG)were immobilized onto the Au surface of a gold-coated glass chip as spots forming a 6×6 matrix.These proteins can be discriminated directly by changing the incident angle of light.Excellent reproducibility for label-free detection of protein molecules was achieved.This SPRI platform represents a simple and robust method for performing high-sensitivity detection of protein microarray.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922404the National Natural Science Foundation of China under Grant Nos 11474040,11474039,61605017 and 61575030the Project of Changchun Science and Technology Bureau under Grant No 14KP007
文摘We report direct nanoscale imaging of ultrafast plasmon in a gold dolmen nanostructure excited with the 7is laser pulses by combining the interferometric time-resolved technology with the three-photon photoemission electron microscopy (PEEM). The interferometric time-resolved traces show that the plasmon mode beating pattern appears at the ends of the dimer slabs in the dolmen nanostructure as a result of coherent superposition of multiple localized surface plasmon modes induced by broad bandwidth of the ultrafast laser pulses. The PEEM measurement further discloses that in-phase of the oscillation field of two neighbor defects are surprisingly observed, which is attributed to the plasmon coupling between them. Furthermore, the control of the temporal delay between the pump and probe laser pluses could be utilized for manipulation of the near-field distribution. These findings deepen our understanding of ultrafast plasmon dynamics in a complex nanosystem.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0203500)the National Natural Science Foundation of China(Grant No.11474350)+1 种基金the State Key Laboratory of Optoelectronic Materials and Technologies,Sun Yat-Sen University,Chinathe State Key Laboratory for Artificial Microstructure&Mesoscopic Physics,Peking University,China
文摘We conduct in-situ near-field imaging of propagating and localized plasmons(cavity and dipole modes) in graphene nano-resonator. Compared with propagating graphene plasmons, the localized modes show twofold near-field amplitude and high volume confining ability(- 10^6). The cavity resonance and dipole mode of graphene plasmons can be effectively controlled through optical method. Furthermore, our numerical simulation shows quantitative agreement with experimental measurements. The results provide insights into the nature of localized graphene plasmons and demonstrate a new way to study the localization of polaritons in Van der Waals materials.
基金Acknowledgements This work was supported by the National Natural Sdence Foundation of China (Nos. 91027037, 21127009, 21425519 and 21221003), Hunan University 985 fund, Tsinghua University Startup fund, the Natural Science Foundation of Zhejiang Province (No. LY16B050006) and Wenzhou Medical University Setup fund (No. QTJ15022).
文摘There is an increasing demand for advanced optical imaging techniques that can detect and resolve nanosize objects at a spatial resolution below the optical diffraction limit, especially in three-dimensional (3D) cellular environments. In this study, using a polarization-activated localization scheme based on the orientation-dependent properties of anisotropic plasmonic metal nanoparticles (MNPs), "photoswitchable" imaging of single gold nanorods (AuNRs) was accomplished not only in two dimensions but also in three dimensions. Moreover, the Rayleigh scattering background arising from the congested subcellular structures was efficiently suppressed. Thus, we obtained the 3D distributions of both the position and the orientation of the AuNRs inside the cells and investigated their intemalization kinetics. To our knowledge, this is the first demonstration of the confocal-like 3D imaging of non-fluorescence nanoparticles with a high resolution and almost zero background. This technique is easy to implement and should greatly facilitate MNP studies and applications in biomedicine and biology.
基金financially supported by the National Natural Science Foundation of China(22034003)State Key Laboratory of Analytical Chemistry for Life Science(5431ZZXM2203).
文摘The review summaries our achievements in optical,electrochemical,as well as mass spectrometry analysis and imaging with high sensitivity,specificity,and spatiotemporal resolution.We promoted the plasmonic imaging system,and developed ultra-sensitive plasmonic nanoprobes for the tracking of single molecules in single living cells,as well as plasmonic nanocatalysts for highly efficient energy conversion.In addition,we contributed a lot in electrogenerated chemiluminescence(ECL)analysis and imaging.Pioneering works including localized surface plasmon resonance(LSPR)enhanced ECL,ECL ratiometric detection,BPE based ECL system,multi-color ECL sensing as well as super-resolved ECL imaging have been initiated by our group.Furthermore,we also dedicated in nanopipette based electrochemical analysis in single living cells,as well as ESI-MS analysis on short time scale.