期刊文献+
共找到295篇文章
< 1 2 15 >
每页显示 20 50 100
Interplay between out-of-plane magnetic plasmon and lattice resonance for modified resonance lineshape and near-field enhancement in double nanoparticles array
1
作者 丁佩 王俊俏 +3 位作者 何金娜 范春珍 蔡根旺 梁二军 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期472-477,共6页
Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the... Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the nanoparticle height or the array period due to the height-dependent magnetic resonance and the periodicity-dependent lattice resonance. The interplay between the two plasmon modes can lead to a remarkable change in resonance lineshape and an improvement on magnetic field enhancement. Simultaneous electric field and magnetic field enhancement can be obtained in the gap region between neighboring particles at two resonance frequencies as the interplay occurs, which presents “open” cavities as electromagnetic field hot spots for potential applications on detection and sensing. The results not only offer an attractive way to tune the optical responses of plasmonic nanostructure, but also provide further insight into the plasmon interactions in periodic nanostructure or metamaterials comprising multiple elements. 展开更多
关键词 magnetic plasmon lattice resonance field enhancement nanoparticles array
下载PDF
Design and applications of lattice plasmon resonances 被引量:2
2
作者 Bharath Bangalore Rajeeva Linhan Lin Yuebing Zheng 《Nano Research》 SCIE EI CAS CSCD 2018年第9期4423-4440,共18页
With their unique optical properties associated with the excitation of surface plasmons, metal nanoparticles (NPs) have been used in optical sensors and devices. The organization of these NPs into arrays can induce ... With their unique optical properties associated with the excitation of surface plasmons, metal nanoparticles (NPs) have been used in optical sensors and devices. The organization of these NPs into arrays can induce coupling effects to engineer new optical responses. In particular, lattice plasmon resonances (LPRs), which arise from coherent interactions and coupling among NPs in periodic arrays, have shown great promise for realizing narrow linewidths, angle-dependent dispersions, and high wavelength tunability of optical spectra. By engineering the materials, shapes, sizes, and spatial arrangements of NPs within arrays, one can tune the LPR-based spectral responses and electromagnetic field distributions to deliver a multitude of improvements, including a high figure-of-merit, superior light-matter interaction, and multiband operation. In this review, we discuss recent progress in designing and applying new metal nanostructures for LPR-based applications. We conclude this review with our perspective on the future opportunities and challenges of LPR-based devices. 展开更多
关键词 plasmonics lattice plasmon resonance nanoparticle array coupling sensors
原文传递
Improving the UV-light stability of silicon heterojunction solar cells through plasmon-enhanced luminescence downshifting of YVO_(4):Eu^(3+),Bi^(3+)nanophosphors decorated with Ag nanoparticles 被引量:1
3
作者 Cheng-Kun Wu Shuai Zou +6 位作者 Chen-Wei Peng Si-Wei Gu Meng-Fei Ni Yu-Lian Zeng Hua Sun Xiao-Hong Zhang Xiao-Dong Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期212-220,I0007,共10页
The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can ... The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can convert UV light to visible light may reduce UV-induced degradation(UVID)without sacrificing the power conversion efficiency(PCE).Herein,a novel composite DS nanomaterial composed of YVO_(4):Eu^(3+),Bi^(3+)nanoparticles(NPs)and AgNPs was synthesized and introduced onto the incident light side of industrial SHJ solar cells to achieve UV shielding.The YVO_(4):Eu^(3+),Bi^(3+)NPs and Ag NPs were synthesized via a sol-gel method and a wet chemical reduction method,respectively.Then,a composite structure of the YVO_(4):Eu^(3+),Bi^(3+)NPs decorated with Ag NPs was synthesized by an ultrasonic method.The emission intensities of the YVO_(4):Eu^(3+),Bi^(3+)nanophosphors were significantly enhanced upon decoration with an appropriate amount of~20 nm Ag NPs due to the localized surface plasmon resonance(LSPR)effect.Upon the introduction of LSPR-enhanced downshifting,the SHJ solar cells exhibited an~0.54%relative decrease in PCE degradation under UV irradiation with a cumulative dose of 45 k W h compared to their counterparts,suggesting excellent potential for application in UV-light stability enhancement of solar cells or modules. 展开更多
关键词 Downshifting Silver nanoparticles Localized surface plasmon resonance UV-light stability Silicon heterojunction solar cells
下载PDF
Surface Plasmon Resonance Enhanced Scattering of Au Colloidal Nanoparticles 被引量:1
4
作者 朱键 王永昌 《Plasma Science and Technology》 SCIE EI CAS CSCD 2003年第3期1835-1840,共6页
Suspended gold nanoparticles have been synthesized via electrochemical method. The strongest resonance scattering peak is at 485 nm, which results from the surface plasmon resonance. When the excited wavelength is at ... Suspended gold nanoparticles have been synthesized via electrochemical method. The strongest resonance scattering peak is at 485 nm, which results from the surface plasmon resonance. When the excited wavelength is at 242 nm (12.4 × 1014 Hz), there have been a 1/2 fraction frequency scattering peak at 485 nm (1/2 × 12.4 × 1014 Hz) and a 1/3 fraction frequency scattering peak at 726 nm (1/3 × 12.4 × 1014 Hz) displayed. Emission spectra with different particle diameters were compared, the intensity of scattering light increases with the particle size. The frequency-dependent scattering average cross section of small particle was calculated from Mie theory. The model calculation is in agreement with the experimental results. 展开更多
关键词 plasmon resonance Au colloidal nanoparticles light scattering
下载PDF
Polydopamine-Assisted Fabrication of Fiber-Optic Localized Surface Plasmon Resonance Sensor Based on Gold Nanoparticles 被引量:1
5
作者 苏荣欣 裴哲远 +4 位作者 黄仁亮 齐崴 王梦凡 王利兵 何志敏 《Transactions of Tianjin University》 EI CAS 2015年第5期412-419,共8页
A fast and facile method of fabricating fiber-optic localized surface plasmon resonance sensors baseff on spherical gold nanoparticles was introduced in this study. The gold nanoparticles with an average diameter of 5... A fast and facile method of fabricating fiber-optic localized surface plasmon resonance sensors baseff on spherical gold nanoparticles was introduced in this study. The gold nanoparticles with an average diameter of 55 nm were synthesized via the Turkevich method and were then immobilized onto the surface of an uncladded sensor probe using a polydopamine layer. To obtain a sensor probe with high sensitivity to changes in the refractive index, a set of key optimization parameters, including the sensing length, coating time of the potydopamine layer, and coating time of the gold nanoparticles, were investigated. The sensitivity of the optimized sensor probe was 522.80 nm per refractive index unit, and the probe showed distinctive wavelength shifts when the refractive index was changed from 1.328 6 to 1.398 7. When stored in deionized water at 4 ℃, the sensor probe proved to be stable over a period of two weeks. The sensor also exhibited advantages, such as low cost, fast fabrication, and simple optical setup, which indicated its potential application in remote sensing and real-time detection. 展开更多
关键词 localized surface plasmon resonance SENSOR gold nanoparticles POLYDOPAMINE optimization
下载PDF
Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles
6
作者 Yan Chen Xianchao Liu +3 位作者 Weidong Chen Zhengwei Xie Yuerong Huang Ling Li 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第1期508-513,共6页
Localized surface plasmon (LSPR) resonance and sensing properties of a novel nanostructure (sexfoil nanoparticle) are studied using the finite-difference time-domain method. For the sandwich sexfoil nanoparticle, ... Localized surface plasmon (LSPR) resonance and sensing properties of a novel nanostructure (sexfoil nanoparticle) are studied using the finite-difference time-domain method. For the sandwich sexfoil nanoparticle, the calculated extinction spectrum shows that with the thickness of the dielectric layer increasing, long-wavelength peaks blueshift, while short- wavelength peaks redshift. Strong near-field coupling of the upper and lower metal layers leads to electric and magnetic field resonances; as the thickness increases, the electric field resonance gradually increases, while the magnetic field resonance decreases. The obtained refractive index sensitivity and figure of merit are 332 nm/RIU and 3.91 RIU^-1, respectively. In order to obtain better sensing ability, we further research the LSPR character of monolayer Ag sexfoil nanoparticle. After a series of trials to optimize the thickness and shape, the refractive index sensitivity approximates 668 nm/RIU, and the greatest figure of merit value comes to 14.8 RIU^-1. 展开更多
关键词 sexfoil nanoparticle localized surface plasmon resonance extinction properties LSPR sensors
下载PDF
Broadband tunability of surface plasmon resonance in graphene-coating silica nanoparticles
7
作者 史哲 杨阳 +1 位作者 甘霖 李志远 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第5期393-399,共7页
Graphene decorated nanomaterials and nanostructures can potentially be used in military and medical science applications. In this article, we study the optical properties of a graphene wrapping silica core–shell sphe... Graphene decorated nanomaterials and nanostructures can potentially be used in military and medical science applications. In this article, we study the optical properties of a graphene wrapping silica core–shell spherical nanoparticle under illumination of external light by using the Mie theory. We find that the nanoparticle can exhibit surface plasmon resonance(SPR) that can be broadly tuned from mid infrared to near infrared via simply changing the geometric parameters. A simplified equivalent dielectric permittivity model is developed to better understand the physics of SPR, and the calculation results agree well qualitatively with the rigorous Mie theory. Both calculations suggest that a small radius of graphene wrapping nanoparticle with high Fermi level could move the SPR wavelength of graphene into the near infrared regime. 展开更多
关键词 graphene core–shell nanoparticle surface plasmon resonance
下载PDF
Quality factor enhancement of plasmonic surface lattice resonance by using asymmetric periods
8
作者 Yunjie Shi Lei Xiong +2 位作者 Yuming Dong Degui Sun Guangyuan Li 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期359-363,共5页
We report that using asymmetric lattice periods can enhance the quality factor of plasmonic surface lattice resonances(SLRs)in two-dimensional array of metal-insulator-metal nanopillars in asymmetric dielectric enviro... We report that using asymmetric lattice periods can enhance the quality factor of plasmonic surface lattice resonances(SLRs)in two-dimensional array of metal-insulator-metal nanopillars in asymmetric dielectric environment.Simulation results show that by adopting appropriate asymmetric lattice periods,the SLR quality factor can be enhanced by 24%compared with the scenario of symmetric periods.We find that the SLR quality factor is optimized when the resonance wavelength is closest to the Rayleigh cutoff wavelength.We also find that the SLRs effect is polarization sensitive in the proposed structure.We expect this work will advance the engineering of SLRs especially in asymmetric dielectric environments,and will promote their applications in sensing. 展开更多
关键词 collective resonance plasmonic nanopillars surface lattice resonance
下载PDF
Spectrophotometric detection of diethylstilbestrol on the basis of the plasmon resonance absorption of silver nanoparticles
9
作者 Lin He,Cheng-Zhi HuangEducation Ministry Key Laboratory on Luminescence and Real-Time Analysis,College of Pharmaceutical Science,Southwest University,Chongqing 400715,China 《Journal of Pharmaceutical Analysis》 SCIE CAS 2010年第3期163-167,共5页
In this study,a spectrophotometric detection method for diethylstilbestrol(DES)was proposed by reducing silver nitrate(AgNO3)to obtain silver nanoparticles(AgNPs)in the medium of ammonia and sodium hydroxide.It was fo... In this study,a spectrophotometric detection method for diethylstilbestrol(DES)was proposed by reducing silver nitrate(AgNO3)to obtain silver nanoparticles(AgNPs)in the medium of ammonia and sodium hydroxide.It was found that the resulting AgNPs have plasmon resonance absorption(PRA)characteristic at 415 nm,and the PRA is proportional to the increase of DES concentration in the range of 4.0×10-8-1.0×10-5M with the detection limit(3σ)of 1.2×10-7M.Most of the coexisting substances at high concentrations did not affect the detection of real samples,such as tablets.The recovery was in the range of 96.01%-107.41% and the RSD was lower than 4.7%.This method can be successfully applied to control preparation quality of DES. 展开更多
关键词 DIETHYLSTILBESTROL silver-nanoparticles plasmon resonance ABSORBANCE
下载PDF
Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance
10
作者 A.R.Sadrolhosseini M.Naseri M.K.Halimah 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第5期111-114,共4页
Fluorene is a polycyclic aromatic hydrocarbon, which is a hazardous toxic chemical in the environment. The measurement of low concentrations of fluorene is a subject of intense interest in chemistry and in the environ... Fluorene is a polycyclic aromatic hydrocarbon, which is a hazardous toxic chemical in the environment. The measurement of low concentrations of fluorene is a subject of intense interest in chemistry and in the environment. Polypyrrole chitosan cobalt ferrite nanoparticles are prepared using the electrochemical method. The prepared layers are characterized using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The layers are used to detect fluorene using the surface plasmon resonance technique at room temperature. The composite layer is evaluated after detection of fluorene using atomic force microscopy. The fluorene is bound on the layer, and the shift of the resonance angle is about 0.0052°, corresponding to the limitation of 0.01 ppm. 展开更多
关键词 Co NP Polypyrrole Chitosan Cobalt Ferrite nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface plasmon resonance
下载PDF
Substrate Effect on Plasmon Resonance of a Gold Nanoparticle Embedded Amorphous BaTiO<sub>3</sub>Film
11
作者 S. Ramakanth K. C. James Raju 《Soft Nanoscience Letters》 2013年第4期32-35,共4页
Two sets of gold nanoparticles (NP) embedded in amorphous BaTiO3 films were prepared by sol-gel method using spin coating. Sample (1) is having BaTiO3 sol with 0.025 gm of Chloroauric acid dissolved in 10 ml of propan... Two sets of gold nanoparticles (NP) embedded in amorphous BaTiO3 films were prepared by sol-gel method using spin coating. Sample (1) is having BaTiO3 sol with 0.025 gm of Chloroauric acid dissolved in 10 ml of propan-2-ol, while sample (2) is having 0.086 gm of Chloroauric acid in the same amount of propan-2-ol. The films have been deposited on various substrates like borosilicate glass and fused silica. TEM images show that the particles are of 5 and 10 nm in size for the two set of samples, and some are having elongated morphology. Optical absorption properties of these films reveal the substrate and size effect on localised surface plasmon resonance (SPR). It shows a marginal red shift in the plasmon resonance peak from 414 nm to 420 nm in the case of sample (1) and 566 nm to 568 nm for sample (2) as the substrate changed from borosilicate glass to fused silica. It also shows red shift in Plasmon peak as the size increases from 5 to 10 nm and coincides with Mie explanation for the shift with size. 展开更多
关键词 GOLD nanoparticles GOLD NP EMBEDDED Dielectrics Substrate and Size Effect on plasmon resonance
下载PDF
Investigating the effect of volatility on the hygroscopicities of acetate nanoparticle aerosols by surface plasmon resonance microscopy
12
作者 Bo Yang Zhibo Xie +5 位作者 Jianguo Liu Huaqiao Gui Jiaoshi Zhang Xiuli Wei Zetao Fan Douguo Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第4期167-178,共12页
Under high relative humidity(RH)conditions,the release of volatile components(such as acetate)has a significant impact on the aerosol hygroscopicity.In this work,one surface plasmon resonance microscopy(SPRM)measureme... Under high relative humidity(RH)conditions,the release of volatile components(such as acetate)has a significant impact on the aerosol hygroscopicity.In this work,one surface plasmon resonance microscopy(SPRM)measurement system was introduced to determine the hygroscopic growth factors(GFs)of three acetate aerosols separately or mixed with glucose at different RHs.For Ca(CH_(3)COO)_(2) or Mg(CH_(3)COO)_(2) aerosols,the hygroscopic growth trend of each time was lower than that of the previous time in three cyclic humidification from 70% RH to 90% RH,which may be due to the volatility of acetic acid leading to the formation of insoluble hydroxide(Ca(OH)_(2) or Mg(OH)_(2))under high RH conditions.Then the third calculated GF(using the Zdanovskii-Stokes-Robinson method)for Ca(CH_(3)COO)_(2) or Mg(CH_(3)COO)_(2) in bicomponent aerosols with 1:1 mass ratio were 3.20% or 5.33% lower than that of the first calculated GF at 90% RH.The calculated results also showed that the hygroscopicity change of bicomponent aerosol was negatively correlated with glucose content,especially when the mass ratio of Mg(CH_(3)COO)_(2) to glucose was 1:2,the GF at 90% RH only decreased by4.67% after three cyclic humidification.Inductively coupled plasma atomic emission spectrum(ICP-AES)based measurements also indicated that the changes of Mg^(2+)concentration in bicomponent was lower than that of the single-component.The results of this study reveal thatduring the efflorescence transitions of atmospheric nanoparticles,the organic acids diffusion rate may be inhibited by the coating effect of neutral organic components,and the particles aging cycle will be prolonged. 展开更多
关键词 Hygroscopic growth VOLATILITY Acetate aerosols nanoparticle aerosol Surface plasmon resonance
原文传递
Ultrasensitive nanosensors based on localized surface plasmon resonances:From theory to applications 被引量:5
13
作者 Wen Chen Huatian Hu +3 位作者 Wei Jiang Yuhao Xu Shunping Zhang Hongxing Xu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第10期58-78,共21页
The subwavelength confinement feature of localized surface plasmon resonance(LSPR) allows plasmonic nanostructures to be functionalized as powerful platforms for detecting various molecular analytes as well as weak ... The subwavelength confinement feature of localized surface plasmon resonance(LSPR) allows plasmonic nanostructures to be functionalized as powerful platforms for detecting various molecular analytes as well as weak processes with nanoscale spatial resolution. One of the main goals of this field of research is to lower the absolute limit-of-detection(LOD)of LSPR-based sensors. This involves the improvement of(i) the figure-of-merit associated with structural parameters such as the size, shape and interparticle arrangement and,(ii) the spectral resolution. The latter involves advanced target identification and noise reduction techniques. By highlighting the strategies for improving the LOD, this review introduces the fundamental principles and recent progress of LSPR sensing based on different schemes including 1) refractometric sensing realized by observing target-induced refractive index changes, 2) plasmon rulers based on target-induced relative displacement of coupled plasmonic structures, 3) other relevant LSPR-based sensing schemes including chiral plasmonics,nanoparticle growth, and optomechanics. The ultimate LOD and the future trends of these LSPR-based sensing are also discussed. 展开更多
关键词 plasmonic sensing localized surface plasmon resonance plasmon rulers nanoparticleS
下载PDF
Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles 被引量:2
14
作者 F Sobhani H Heidarzadeh H Bahador 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第6期532-537,共6页
The cluster-shaped plasmonic nanostructures are used to manage the incident light inside an ultra-thin silicon solar cell.Here we simulate spherical,conical,pyramidal,and cylindrical nanoparticles in a form of a clust... The cluster-shaped plasmonic nanostructures are used to manage the incident light inside an ultra-thin silicon solar cell.Here we simulate spherical,conical,pyramidal,and cylindrical nanoparticles in a form of a cluster at the rear side of a thin silicon cell,using the finite difference time domain(FDTD)method.By calculating the optical absorption and hence the photocurrent,it is shown that the clustering of nanoparticles significantly improves them.The photocurrent enhancement is the result of the plasmonic effects of clustering the nanoparticles.For comparison,first a cell with a single nanoparticle at the rear side is evaluated.Then four smaller nanoparticles are put around it to make a cluster.The photocurrents of 20.478 mA/cm2,23.186 mA/cm2,21.427 mA/cm2,and 21.243 mA/cm2 are obtained for the cells using clustering conical,spherical,pyramidal,cylindrical NPs at the backside,respectively.These values are 13.987 mA/cm2,16.901 mA/cm2,16.507 mA/cm2,17.926 mA/cm2 for the cell with one conical,spherical,pyramidal,cylindrical NPs at the backside,respectively.Therefore,clustering can significantly improve the photocurrents.Finally,the distribution of the electric field and the generation rate for the proposed structures are calculated. 展开更多
关键词 clustering nanoparticles plasmonic solar cell localized surface plasmon resonance PHOTOCURRENT finite difference time domain(FDTD)method light management
下载PDF
Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates
15
作者 A E Ershov V S Gerasimov +2 位作者 I L Isaev A P Gavrilyuk S V Karpov 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第3期412-419,共8页
We have studied the dynamic and static processes occurring in disordered multiparticle colloidal Ag aggregates with natural structure and affecting their plasmonic absorption spectra under pico-and nanosecond pulsed l... We have studied the dynamic and static processes occurring in disordered multiparticle colloidal Ag aggregates with natural structure and affecting their plasmonic absorption spectra under pico-and nanosecond pulsed laser radiations, as well as the physical origin responsible for these processes. We have shown that depending on the duration of the laser pulse,the mechanisms of laser modification of such aggregates can be associated both with changes in the resonant properties of the particles due to their heating and melting(picosecond irradiation mode) and with the particle shifts in the resonant domains of the aggregates(nanosecond pulses) which depend on the wavelength, intensity, and polarization of the radiation.These mechanisms result in formation of a narrow dip in the plasmonic absorption spectrum of the aggregates near the laser radiation wavelength and affect the shape and position of the dip. The effect of polydispersity of nanoparticle aggregates on laser photochromic reaction has been studied. 展开更多
关键词 nanoparticle surface plasmon resonance PHOTOCHROMIC process pulsed LASER radiation
下载PDF
Theoretical study on the lasing plasmon of a split ring for label-free detection of single molecules and single nanoparticles
16
作者 Chunjie Zheng Tianqing Jia +3 位作者 Hua Zhao Yingjie Xia Shian Zhang Zhenrong Sun 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第5期504-512,共9页
This paper reports the plasmonic lasing of a split ring filled with gain material in water. The lasing mode(1500 nm)is far from the pump mode(980 nm), which can depress the detection noise from the pump light. The... This paper reports the plasmonic lasing of a split ring filled with gain material in water. The lasing mode(1500 nm)is far from the pump mode(980 nm), which can depress the detection noise from the pump light. The laser intensities of the two modes simultaneously increase by more than 10^3 in amplitude, which can intensify the absorption efficiency of the pumping light and enhance the plasmonic lasing. The plasmonic lasing is a sensitive sensor. When a single protein nanoparticle(n = 1.5, r = 1.25 nm) is trapped in the gap of the split ring, the lasing spectrum moves by 0.031 nm, which is much larger than the detection limit of 10^-5 nm. Moreover, the lasing intensity is also very sensitive to the trapped nanoparticle. It reduces to less than 1/600 when a protein nanoparticle(n = 1.5, r = 1.25 nm) is trapped in the gap. 展开更多
关键词 label-free detection split-ring resonators plasmonic lasing single molecules and single nanoparticles
下载PDF
Lattice plasmon mode excitation via near-field coupling
17
作者 Yun Lin Shuo Shen +1 位作者 Xiang Gao Liancheng Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期344-349,共6页
The optical response of metal nanoparticles can be modified through near-field or far-field interaction,yet the lattice plasmon modes(LPMs)considered can only be excited from the latter.Here instead,we present a theor... The optical response of metal nanoparticles can be modified through near-field or far-field interaction,yet the lattice plasmon modes(LPMs)considered can only be excited from the latter.Here instead,we present a theoretical evaluation for LPM excitation via the near-field coupling process.The sample is an arrayed structure with specific units composed of upper metal disks,a lower metal hole and a sandwiched dielectric post.The excitation process and underlying mechanism of the LPM and the influence of the structure parameters on the optical properties have been investigated in detail by using a finite-difference time-domain(FDTD)numerical method.Our investigation presented here should advance the understanding of near-field interaction of plasmon modes for LPM excitation,and LPMs could find some potential applications,such as in near-field optical microscopes,biosensors,optical filters and plasmonic lasers. 展开更多
关键词 optical response of metal nanoparticles lattice plasmon modes finite-difference time-domain
下载PDF
金纳米颗粒的特性及其应用于生物传感体系的研究进展
18
作者 严艳琴(综述) 许永杰 +1 位作者 张华 莫非(审校) 《国际检验医学杂志》 CAS 2024年第6期751-756,共6页
金纳米颗粒(AuNPs)具有独特的理化性质、良好的生物相容性和易功能化的特点,成为生物传感领域的研究热点。本文综述了AuNPs的合成、主要特性和表面功能化,以及它在各种传感体系中的应用研究进展。
关键词 金纳米颗粒 局域表面等离子体共振 生物分子检测
下载PDF
单纳米粒子表面的甲醇电催化氧化过程
19
作者 周湘淇 李丽丽 +8 位作者 王俊刚 李展波 邵希吉 程付鹏 张林娟 王建强 Akhil Jaing 林涛 静超 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第2期59-67,共9页
由于全球资源短缺和环境污染等问题日益加剧,开发利用洁净高效的新能源已成为当今社会研究热点.其中,直接甲醇燃料电池(DMFC)具有低温启动、无需重整制氢、洁净环保和体积小巧等特性,展现出较好的应用前景.DMFC的阳极反应为甲醇氧化反应... 由于全球资源短缺和环境污染等问题日益加剧,开发利用洁净高效的新能源已成为当今社会研究热点.其中,直接甲醇燃料电池(DMFC)具有低温启动、无需重整制氢、洁净环保和体积小巧等特性,展现出较好的应用前景.DMFC的阳极反应为甲醇氧化反应,甲醇的完全氧化涉及到复杂的六步电子转移反应过程.揭示甲醇氧化的反应路径与机理,阐明催化剂的真实活性中心以及毒化效应,对于高效催化剂的设计和制备至关重要.随着纳米技术的发展,在单颗粒水平对纳米催化剂进行表征受到了越来越多的关注.因此,亟需发展具有高灵敏度的原位界面表征方法,实现纳米尺度的精准测量,排除催化剂平均效应,获取纳米表界面真实的催化反应信息.本文结合纳米等离子共振散射光谱与电化学技术,获得了单个纳米催化剂的同步光电响应信号,实现单颗粒水平纳米粒子表面化学、电化学反应过程(如电荷转移、分子吸附等)的高灵敏监测,揭示纳米尺度表界面催化反应机制.利用这一技术,动态监测了单个金/铂包金纳米颗粒表面的甲醇氧化过程.结果表明,在金纳米颗粒表面,甲醇氧化主要通过HCOOH路径,生成产物为HCOOH或CO_(2).其中,反应中间体与羟基离子的竞争性吸附起到重要作用,反应决速步为Au-OH和Au-CHO的共吸附.而铂催化甲醇氧化主要经过CO路径,决速步为Pt-OH和Pt-CO氧化生成Pt-COOH过程.此外,观测到金和铂氢氧化物为催化反应的活性物种,进一步证实了金属氧化物对于催化活性的钝化作用.结合密度泛函理论模拟,明确了甲醇氧化反应中间体吸附与金属氢氧化物演变之间的内在联系.综上,本文利用纳米等离子共振散射光谱,原位监测了单个纳米粒子表面的甲醇电催化氧化过程,实现了催化剂真实活性物种演变与失活过程的直接观测,揭示了不同催化剂表面的决速步骤,为提高催化反应效率提供了更加准确的反应信息.本文将有益于纳米等离子共振散射光谱在电催化反应高灵敏监测方面的广泛应用,并为高效甲醇催化剂的制备提供参考. 展开更多
关键词 单个纳米粒子检测 暗场显微镜 等离子体共振散射光谱 甲醇氧化反应 纳米电化学
下载PDF
Anisotropic Plasmon Resonance Enables Spatially Controlled Photothermal and Photochemical Effects in Hot Carrier-Driven Catalysis
20
作者 Jiaqi Wang Zhijie Zhu +15 位作者 Kai Feng Shuang Liu Yuxuan Zhou Ifra Urooj Jiari He Zhiyi Wu Jiahui Shen Xu Hu Zhijie Chen Xudong Dong Manzar Sohail Yanyun Ma Jinxing Chen Chaoran Li Xingda An Le He 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2024年第16期1877-1885,共9页
Localized surface plasmon resonance has been demonstrated to provide effective photophysical enhancement mechanisms in plasmonic photocatalysis.However,it remains highly challenging for distinct mechanisms to function... Localized surface plasmon resonance has been demonstrated to provide effective photophysical enhancement mechanisms in plasmonic photocatalysis.However,it remains highly challenging for distinct mechanisms to function in synergy for a collective gain in catalysis due to the lack of spatiotemporal control of their effect.Herein,the anisotropic plasmon resonance nature of Au nanorods was exploited to achieve distinct functionality towards synergistic photocatalysis.Photothermal and photochemical effects were enabled by the longitudinal and transverse plasmon resonance modes,respectively,and were enhanced by partial coating of silica nanoshells and epitaxial growth of a reactor component.Resonant excitation leads to a synergistic gain in photothermal-mediated hot carrier-driven hydrogen evolution catalysis.Our approach provides important design principles for plasmonic photocatalysts in achieving spatiotemporal modulation of distinct photophysical enhancement mechanisms.It also effectively broadens the sunlight response range and increases the efficacy of distinct plasmonic enhancement pathways towards solar energy harvesting and conversion. 展开更多
关键词 plasmon resonance Photothermal effect PHOTOCHEMISTRY PHOTOCATALYSIS Metal nanoparticles Charge carrier injection Heterogeneous catalysis PHOTOELECTROCHEMISTRY
原文传递
上一页 1 2 15 下一页 到第
使用帮助 返回顶部