The near crack line field analysis method has been used to investigate into the exact elastic-plastic solutions of a mode Ⅱ crack under plane stress condition in anelastic-perfectly plastic solid. The assumptions of ...The near crack line field analysis method has been used to investigate into the exact elastic-plastic solutions of a mode Ⅱ crack under plane stress condition in anelastic-perfectly plastic solid. The assumptions of the usual small scale yielding theoryhave been completely. dbandoned and the correct .formulations of matching conditionsat the elastic-plastic boundary have been given. By matching the general solution of the plastic stress field (but not the special solution used to be adopted) will the exactelastic stress field (but not the crack tip K-dominant field) at the elastic-plasticboundary. near the crack line, the plastic .stresses, the length of the plastic zone and theunit normal vector of the elaslic-plastic boundary. which sufficiently precise nearthe crack line region, hare been given.展开更多
The near crack line field analysis method has been used io investigate into theexact elastic-plastic solutions of a mode II crack under plane stress condilion in anelastic-perfectly plastic solid. The assumptions of t...The near crack line field analysis method has been used io investigate into theexact elastic-plastic solutions of a mode II crack under plane stress condilion in anelastic-perfectly plastic solid. The assumptions of the usual small scale yielding theory.hare been completely. dbandoned and the correct formulations of matching conditionsat the elaslic-plastic boundary. have been given. By, matching the general solution ofthe plastic slress field (bul not the special solution used to be adopted) with the exactelastic stress field (but not the crack tip K-dominant field) at the elastic-plasticboundary, near the crack line, the plastic stresses. the length of the plastic =one and theunit normal vector of the elastic-plastic boundary.which are sufficiently precise near the crack line region ,have been given.展开更多
Crack line field analysis method has become an independent method for crack elastic-plastic analysis, which greatly simplifies the complexity of crack elastic-plastic problems and overcomes the corresponding mathemati...Crack line field analysis method has become an independent method for crack elastic-plastic analysis, which greatly simplifies the complexity of crack elastic-plastic problems and overcomes the corresponding mathematical difficulty. With this method, the precise elastic-plastic solutions near crack lines for variety of crack problems can be obtained. But up to now all solutions obtained by this method were for different concrete problems, no general steps and no general form of matching equations near crack line are given out. With crack line analysis method, this paper proposes the general steps of elastic plastic analysis near crack line for mode I crack in elastic-perfectly plastic solids under plane stress condition, and in turn given out the solving process and result for a specific problem.展开更多
The crack tip stress-strain fields of the elastic-plastic cracked specimens have been analyzed using finite element calculations.The crack initiation and steady propagation behaviours have also been investigated by me...The crack tip stress-strain fields of the elastic-plastic cracked specimens have been analyzed using finite element calculations.The crack initiation and steady propagation behaviours have also been investigated by means of slip line pattern etching technique and mechanical tests. The results show that there are HRR near field and distant field in the crack tip region,and the later depends on the specimen configuration.The crack initiation behaviour is controlled by a single parameter J.In contrast,the steady crack propagation is affected by the distant strain field and can not be described by single parameter only.展开更多
Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic-viscoplastic constitutive relation with various hardening-softening-hardenin...Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic-viscoplastic constitutive relation with various hardening-softening-hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip. On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening (or softening-hardening) has a particularly strong effect on the near crack tip stress and deformation fields.展开更多
The elastic-plastic stress distribution and the elastic-plastic boundary con- figuration near a crack surface region are significant but hard to obtain by means of the conventional analysis. A crack line analysis meth...The elastic-plastic stress distribution and the elastic-plastic boundary con- figuration near a crack surface region are significant but hard to obtain by means of the conventional analysis. A crack line analysis method is developed in this paper by consid- ering the crack surface as an extension of the crack line. The stresses in the plastic zone, the length, and the unit normal vector of the elastic-plastic boundary near a crack surface region are obtained for an antiplane crack in an elastic-perfectly plastic solid. The usual small scale yielding assumptions are not needed in the analysis.展开更多
Crack line analysis is an effective way to solve elastic-plastic crack problems. Application of the method does not need the traditional small-scale yielding conditions and can obtain sufficiently accurate solutions n...Crack line analysis is an effective way to solve elastic-plastic crack problems. Application of the method does not need the traditional small-scale yielding conditions and can obtain sufficiently accurate solutions near the crack line. To address mode- Ⅲ crack problems under the perfect elastic-plastic condition, matching procedures of the crack line analysis method axe summarized and refined to give general forms and formulation steps of plastic field, elastic-plastic boundary, and elastic-plastic matching equations near the crack line. The research unifies mode-III crack problems under different conditions into a problem of determining four integral constants with four matching equations. An example is given to verify correctness, conciseness, and generality of the procedure.展开更多
The fundamental plastic nature of the quasicrystalline materials remains an open problem due to its essential complicacy. By developing the proposed generalized cohesive force model, the plastic deformation of crack i...The fundamental plastic nature of the quasicrystalline materials remains an open problem due to its essential complicacy. By developing the proposed generalized cohesive force model, the plastic deformation of crack in point group 10, 10 decagonal quasicrystals is analysed strictly and systematically. The crack tip opening displacement (CTOD) and the size of the plastic zone around the crack tip are determined exactly. The quantity of the crack tip opening displacement can be used as a parameter of nonlinear fracture mechanics of quasicrystalline material. In addition, the present work may provide a way for the plastic analysis of quasicrystals.展开更多
The rare earth Zr catalyst, whose carrier was Al 2O 3, was prepared by co-precipitation with Zr(NO 3) 2, Al(NO 3) 3, and(NH 2) 2CO as the raw materials. The obtained catalyst was used to reform the waste plastic crack...The rare earth Zr catalyst, whose carrier was Al 2O 3, was prepared by co-precipitation with Zr(NO 3) 2, Al(NO 3) 3, and(NH 2) 2CO as the raw materials. The obtained catalyst was used to reform the waste plastic cracking product. As the Zr content in the catalyst increases, the yields of gasoline, gas, and the rate of carbon deposition increase, but the yields of diesel and heavy oil decrease. The optimum Zr content of the catalyst is 5%. At 290 ℃, with this most suitable catalyst, the yield of liquid fuel oil is the highest, about 86.10%, and research octance number(RON) of the gasoline is 92.15.展开更多
Day by day worldwide use of plastics is increasing because of their light weight and durable characteristics. Waste plastics are major environmental problems all over the world. Waste plastics are not bio-degradable, ...Day by day worldwide use of plastics is increasing because of their light weight and durable characteristics. Waste plastics are major environmental problems all over the world. Waste plastics are not bio-degradable, it remains in the landfill for a long period of time causing vegetation and aquatic ecosystem dilemmas. Abandoned waste plastic thrown into the ocean causes friction of ocean waves and then broken down by sunlight into small pieces and takes the shape of plastic like soup. Aquatic organism mistakes the plastic soup as their food and can’t digest, either they die or through food chain it affects human health. To avoid severe environmental degradation problems of waste plastics some countries and big cities banned or restricted the use of plastic products. The worldwide generation of waste plastics is approximately 280 million tons/year. All most all of these waste plastics are dumped either in land or ocean. City municipalities spend huge amount of money each year just to dispose of these waste plastics into landfill because most waste plastics are not recycled. When the waste plastics are subjected to incineration, they release harmful toxic gas into the environment causing severe pollution. These waste plastics gradually enhance the hazardous environmental problems. Generally plastics are made from crude oil, however crude oil is a very limited natural resource and non-renewable. Every year millions of barrels of crude oil are to produce the waste plastics and when plastics are discarded after use the energy source is lost. A new developed technology plan minimizes the environment pollution problems simultaneously boost up energy sector by renovating the waste plastics into high energy content fuel. The produced fuel is obtained using a unique thermal degradation of waste plastics and converting them into hydrocarbon fuel like materials. Preliminary tests proved that this fuel burns cleaner and the production cost is very low. Unique production setup demonstrated to produce 93% fuel from waste plastic in the pilot scale. The Fuel produced has been tested and proven to work on majority types of internal combustion engines. This technology utilized can avoid waste plastic pollution problem worldwide by the implementation of newly developed technology. Through the utilization of the technology the use of reliable plastics won’t need to be banned and serve as a very reliable alternate source of energy. The technology will also help reduce a significant amount of import oil from foreign countries and help provide a steady economy.展开更多
Under the condition that all the stress components at a crack-tip are the functions of 0 only, making use of the equations of steady-state motion. Hill anisotropic yield condition and stress-strain relations, we obtai...Under the condition that all the stress components at a crack-tip are the functions of 0 only, making use of the equations of steady-state motion. Hill anisotropic yield condition and stress-strain relations, we obtain the general solution of anisotropic plastic field at a rapidly propagating plane-stress crack-tip. Applying this general solution to four particular cases of anisotropy, the general solutions of these four particular cases are derived. Finally, we give the anisotropic plastic field at the rapidly propagating plane-stress mode I crack-tip in the case of X=Y=Z展开更多
Under the condition that all the stress components at a crack-tip are the functions of only, making use of the equations of steady-slate motion, stress-strain relations and Hill anisotropic yield conditions, we obtain...Under the condition that all the stress components at a crack-tip are the functions of only, making use of the equations of steady-slate motion, stress-strain relations and Hill anisotropic yield conditions, we obtain the general solutions at a crack-tip in both the cases of anti-plane and in-plane strains. Applying these general solutions to the concrete cracks, the anisotropic plastic fields at the rapidly propagating tips of mode III and mode I cracks are derived.展开更多
The near crack line analysis method has been used in the present paper,The classical small scale yielding conditions have been completely abandoned in the analyses and one inappropriate matching condition used to be u...The near crack line analysis method has been used in the present paper,The classical small scale yielding conditions have been completely abandoned in the analyses and one inappropriate matching condition used to be used at the elasticplastic boundary has been corrected.The reasonable solution of the plastic stresses near the crack line region has been established.By matching the plastic stresses with the exact elastic stresses at the elastic-plastic boundary,the plastic stresses the length of the plastic zone and the unit normal vector of the elastic-plastic boundary near the crock line region have been obtained for a mode I crack under uniaxial tension,as well as a mode I crack under biaxial tension,which shows that for both conditions the plastic stress componentsσy, and σsy.he length of the plastic zone and the unit normal vector of the elastic-plastic boundary are quite the same while the plastic stress σs is different.展开更多
In this paper, the improved near crack line analysis method proposed in Refs. [1]and [2] is used to investigate a mode Ⅲ crack loaded by antiplane point forces in aninfinite plate in an elastic-perfectly plastic sol...In this paper, the improved near crack line analysis method proposed in Refs. [1]and [2] is used to investigate a mode Ⅲ crack loaded by antiplane point forces in aninfinite plate in an elastic-perfectly plastic solid. The solutions of this paper aresufficiently precise near the crack line region because. the assumptions of the smallscale yielding theory have not been used and no other assumptions have been taken.展开更多
Based on the theoretical framework for crack growth analysis provided by Gao and Hwang, the 5-sector soiution of near-tip fields of mode-I cracks growing quasi-statically and steadily in compressible elastic perfectly...Based on the theoretical framework for crack growth analysis provided by Gao and Hwang, the 5-sector soiution of near-tip fields of mode-I cracks growing quasi-statically and steadily in compressible elastic perfectly plastic materials is obtained.As Poisson's ratio v tends to 1/2,the 5-sector solution degener- ates to the 4-sector solution of near-tip fields of crack growth in incompressible elastic perfectly plastic materials.展开更多
The fracture investigations of the planar lattices made of ductile cell walls are currently limited to bending-dominated hexagonal honeycomb. In this paper, the plastic zones of stretching-dominated lattices, includin...The fracture investigations of the planar lattices made of ductile cell walls are currently limited to bending-dominated hexagonal honeycomb. In this paper, the plastic zones of stretching-dominated lattices, including Kagome and triangular lattices, are estimated by analyzing their effective yield loci. The normalized in-plane yield loci of these two lattices are almost identical convex curves enclosed by 4 straight lines, which is almost independent of the relative density but is highly sensitive to the principal stress directions. Therefore, the plastic zones around the crack tip of Kagome and triangular are estimated to be quite different to those of the continuum solid and also hexagonal lattice. The plastic zones predictions by convex yield surfaces of both lattices are validated by FE calculations, although the shear lag region caused by non-local bending effect in the Kagome lattice enlarges the plastic zone in cases of small ratio of rp/l.展开更多
Some possible alternative solutions of near-tip fields are studied for plane-strain Mode-I qua- si-static steady crack growth in incompressible(v=1/2)elastic perfectly-plastic media.A group of four-sector so- lutions ...Some possible alternative solutions of near-tip fields are studied for plane-strain Mode-I qua- si-static steady crack growth in incompressible(v=1/2)elastic perfectly-plastic media.A group of four-sector so- lutions and a three-sector solution in which the elastic-unloading region vanishes are given.Stress functions,plas- tic flow factors and plastic strains in each region are also given.展开更多
Under the condition that any perfeetly plastic stress components at a crack tip are nothing but the Junctions of 0 only, making use of equilibriumequations,Hill ani.sutropic yield condition and unloading stress-strain...Under the condition that any perfeetly plastic stress components at a crack tip are nothing but the Junctions of 0 only, making use of equilibriumequations,Hill ani.sutropic yield condition and unloading stress-strain relations, in this paper, we derive the general analytical expressions of anisotropic plastiestress Jields at the slowly steadyhe slowly steady propagatin tips of plane and anti-phane strain,Applying these general analytical expressions to the concrete cracks the attchvtical expressions of anisotropie plastic stress fields at the slowly steady propagating tips of Motle I and Motle III cracks are obtained. For the isolropic plastic material, the anisotropic plastic stress fields at a slowly propagating crack tip become the perfeeby plastic mress fields展开更多
The stress and deformation fields near the tip of an anti-plane crack growing quasi-statically along an interface of elastic perfectly plastic materials are given in this paper. A family of solutions for the growing c...The stress and deformation fields near the tip of an anti-plane crack growing quasi-statically along an interface of elastic perfectly plastic materials are given in this paper. A family of solutions for the growing crack fields is found covering all admissible crack line shear stress ratios.展开更多
Under the hypothesis that all the perfectly plastic stress components at a orach tip are the functions of θ only, making use of yield conditions and equilibrium equations. we derive the generally analytical expressio...Under the hypothesis that all the perfectly plastic stress components at a orach tip are the functions of θ only, making use of yield conditions and equilibrium equations. we derive the generally analytical expressions of the perfectly plastic stress field at a crack tip. Applying these generally analytical expressions to the concrete cracks, the analytical expressions of perfectly plastic stress fields at the tips of Mode Ⅰ Mode Ⅱ, Mode Ⅲ and Mixed Mode Ⅰ-Ⅱ cracks are obtained.展开更多
文摘The near crack line field analysis method has been used to investigate into the exact elastic-plastic solutions of a mode Ⅱ crack under plane stress condition in anelastic-perfectly plastic solid. The assumptions of the usual small scale yielding theoryhave been completely. dbandoned and the correct .formulations of matching conditionsat the elastic-plastic boundary have been given. By matching the general solution of the plastic stress field (but not the special solution used to be adopted) will the exactelastic stress field (but not the crack tip K-dominant field) at the elastic-plasticboundary. near the crack line, the plastic .stresses, the length of the plastic zone and theunit normal vector of the elaslic-plastic boundary. which sufficiently precise nearthe crack line region, hare been given.
文摘The near crack line field analysis method has been used io investigate into theexact elastic-plastic solutions of a mode II crack under plane stress condilion in anelastic-perfectly plastic solid. The assumptions of the usual small scale yielding theory.hare been completely. dbandoned and the correct formulations of matching conditionsat the elaslic-plastic boundary. have been given. By, matching the general solution ofthe plastic slress field (bul not the special solution used to be adopted) with the exactelastic stress field (but not the crack tip K-dominant field) at the elastic-plasticboundary, near the crack line, the plastic stresses. the length of the plastic =one and theunit normal vector of the elastic-plastic boundary.which are sufficiently precise near the crack line region ,have been given.
文摘Crack line field analysis method has become an independent method for crack elastic-plastic analysis, which greatly simplifies the complexity of crack elastic-plastic problems and overcomes the corresponding mathematical difficulty. With this method, the precise elastic-plastic solutions near crack lines for variety of crack problems can be obtained. But up to now all solutions obtained by this method were for different concrete problems, no general steps and no general form of matching equations near crack line are given out. With crack line analysis method, this paper proposes the general steps of elastic plastic analysis near crack line for mode I crack in elastic-perfectly plastic solids under plane stress condition, and in turn given out the solving process and result for a specific problem.
文摘The crack tip stress-strain fields of the elastic-plastic cracked specimens have been analyzed using finite element calculations.The crack initiation and steady propagation behaviours have also been investigated by means of slip line pattern etching technique and mechanical tests. The results show that there are HRR near field and distant field in the crack tip region,and the later depends on the specimen configuration.The crack initiation behaviour is controlled by a single parameter J.In contrast,the steady crack propagation is affected by the distant strain field and can not be described by single parameter only.
文摘Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic-viscoplastic constitutive relation with various hardening-softening-hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip. On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening (or softening-hardening) has a particularly strong effect on the near crack tip stress and deformation fields.
基金supported by the National Natural Science Foundation of China (No.10672196)
文摘The elastic-plastic stress distribution and the elastic-plastic boundary con- figuration near a crack surface region are significant but hard to obtain by means of the conventional analysis. A crack line analysis method is developed in this paper by consid- ering the crack surface as an extension of the crack line. The stresses in the plastic zone, the length, and the unit normal vector of the elastic-plastic boundary near a crack surface region are obtained for an antiplane crack in an elastic-perfectly plastic solid. The usual small scale yielding assumptions are not needed in the analysis.
基金supported by the National Natural Science Foundation of China (No.10672196)
文摘Crack line analysis is an effective way to solve elastic-plastic crack problems. Application of the method does not need the traditional small-scale yielding conditions and can obtain sufficiently accurate solutions near the crack line. To address mode- Ⅲ crack problems under the perfect elastic-plastic condition, matching procedures of the crack line analysis method axe summarized and refined to give general forms and formulation steps of plastic field, elastic-plastic boundary, and elastic-plastic matching equations near the crack line. The research unifies mode-III crack problems under different conditions into a problem of determining four integral constants with four matching equations. An example is given to verify correctness, conciseness, and generality of the procedure.
基金supported by the National Natural Science Foundation of China (Grant No. 10672022)
文摘The fundamental plastic nature of the quasicrystalline materials remains an open problem due to its essential complicacy. By developing the proposed generalized cohesive force model, the plastic deformation of crack in point group 10, 10 decagonal quasicrystals is analysed strictly and systematically. The crack tip opening displacement (CTOD) and the size of the plastic zone around the crack tip are determined exactly. The quantity of the crack tip opening displacement can be used as a parameter of nonlinear fracture mechanics of quasicrystalline material. In addition, the present work may provide a way for the plastic analysis of quasicrystals.
文摘The rare earth Zr catalyst, whose carrier was Al 2O 3, was prepared by co-precipitation with Zr(NO 3) 2, Al(NO 3) 3, and(NH 2) 2CO as the raw materials. The obtained catalyst was used to reform the waste plastic cracking product. As the Zr content in the catalyst increases, the yields of gasoline, gas, and the rate of carbon deposition increase, but the yields of diesel and heavy oil decrease. The optimum Zr content of the catalyst is 5%. At 290 ℃, with this most suitable catalyst, the yield of liquid fuel oil is the highest, about 86.10%, and research octance number(RON) of the gasoline is 92.15.
文摘Day by day worldwide use of plastics is increasing because of their light weight and durable characteristics. Waste plastics are major environmental problems all over the world. Waste plastics are not bio-degradable, it remains in the landfill for a long period of time causing vegetation and aquatic ecosystem dilemmas. Abandoned waste plastic thrown into the ocean causes friction of ocean waves and then broken down by sunlight into small pieces and takes the shape of plastic like soup. Aquatic organism mistakes the plastic soup as their food and can’t digest, either they die or through food chain it affects human health. To avoid severe environmental degradation problems of waste plastics some countries and big cities banned or restricted the use of plastic products. The worldwide generation of waste plastics is approximately 280 million tons/year. All most all of these waste plastics are dumped either in land or ocean. City municipalities spend huge amount of money each year just to dispose of these waste plastics into landfill because most waste plastics are not recycled. When the waste plastics are subjected to incineration, they release harmful toxic gas into the environment causing severe pollution. These waste plastics gradually enhance the hazardous environmental problems. Generally plastics are made from crude oil, however crude oil is a very limited natural resource and non-renewable. Every year millions of barrels of crude oil are to produce the waste plastics and when plastics are discarded after use the energy source is lost. A new developed technology plan minimizes the environment pollution problems simultaneously boost up energy sector by renovating the waste plastics into high energy content fuel. The produced fuel is obtained using a unique thermal degradation of waste plastics and converting them into hydrocarbon fuel like materials. Preliminary tests proved that this fuel burns cleaner and the production cost is very low. Unique production setup demonstrated to produce 93% fuel from waste plastic in the pilot scale. The Fuel produced has been tested and proven to work on majority types of internal combustion engines. This technology utilized can avoid waste plastic pollution problem worldwide by the implementation of newly developed technology. Through the utilization of the technology the use of reliable plastics won’t need to be banned and serve as a very reliable alternate source of energy. The technology will also help reduce a significant amount of import oil from foreign countries and help provide a steady economy.
文摘Under the condition that all the stress components at a crack-tip are the functions of 0 only, making use of the equations of steady-state motion. Hill anisotropic yield condition and stress-strain relations, we obtain the general solution of anisotropic plastic field at a rapidly propagating plane-stress crack-tip. Applying this general solution to four particular cases of anisotropy, the general solutions of these four particular cases are derived. Finally, we give the anisotropic plastic field at the rapidly propagating plane-stress mode I crack-tip in the case of X=Y=Z
文摘Under the condition that all the stress components at a crack-tip are the functions of only, making use of the equations of steady-slate motion, stress-strain relations and Hill anisotropic yield conditions, we obtain the general solutions at a crack-tip in both the cases of anti-plane and in-plane strains. Applying these general solutions to the concrete cracks, the anisotropic plastic fields at the rapidly propagating tips of mode III and mode I cracks are derived.
文摘The near crack line analysis method has been used in the present paper,The classical small scale yielding conditions have been completely abandoned in the analyses and one inappropriate matching condition used to be used at the elasticplastic boundary has been corrected.The reasonable solution of the plastic stresses near the crack line region has been established.By matching the plastic stresses with the exact elastic stresses at the elastic-plastic boundary,the plastic stresses the length of the plastic zone and the unit normal vector of the elastic-plastic boundary near the crock line region have been obtained for a mode I crack under uniaxial tension,as well as a mode I crack under biaxial tension,which shows that for both conditions the plastic stress componentsσy, and σsy.he length of the plastic zone and the unit normal vector of the elastic-plastic boundary are quite the same while the plastic stress σs is different.
文摘In this paper, the improved near crack line analysis method proposed in Refs. [1]and [2] is used to investigate a mode Ⅲ crack loaded by antiplane point forces in aninfinite plate in an elastic-perfectly plastic solid. The solutions of this paper aresufficiently precise near the crack line region because. the assumptions of the smallscale yielding theory have not been used and no other assumptions have been taken.
基金The project supported by the National Natural Science Foundation of China.
文摘Based on the theoretical framework for crack growth analysis provided by Gao and Hwang, the 5-sector soiution of near-tip fields of mode-I cracks growing quasi-statically and steadily in compressible elastic perfectly plastic materials is obtained.As Poisson's ratio v tends to 1/2,the 5-sector solution degener- ates to the 4-sector solution of near-tip fields of crack growth in incompressible elastic perfectly plastic materials.
基金supported by the National Natural Science Foundation of China (No.10502027)the National Fundamental Research Program of China (No.G2006CB601202)
文摘The fracture investigations of the planar lattices made of ductile cell walls are currently limited to bending-dominated hexagonal honeycomb. In this paper, the plastic zones of stretching-dominated lattices, including Kagome and triangular lattices, are estimated by analyzing their effective yield loci. The normalized in-plane yield loci of these two lattices are almost identical convex curves enclosed by 4 straight lines, which is almost independent of the relative density but is highly sensitive to the principal stress directions. Therefore, the plastic zones around the crack tip of Kagome and triangular are estimated to be quite different to those of the continuum solid and also hexagonal lattice. The plastic zones predictions by convex yield surfaces of both lattices are validated by FE calculations, although the shear lag region caused by non-local bending effect in the Kagome lattice enlarges the plastic zone in cases of small ratio of rp/l.
基金Project supported by the State Education Commission under a funding program for Excellent University Young Faculties and National Natural Science Foundation of China.
文摘Some possible alternative solutions of near-tip fields are studied for plane-strain Mode-I qua- si-static steady crack growth in incompressible(v=1/2)elastic perfectly-plastic media.A group of four-sector so- lutions and a three-sector solution in which the elastic-unloading region vanishes are given.Stress functions,plas- tic flow factors and plastic strains in each region are also given.
文摘Under the condition that any perfeetly plastic stress components at a crack tip are nothing but the Junctions of 0 only, making use of equilibriumequations,Hill ani.sutropic yield condition and unloading stress-strain relations, in this paper, we derive the general analytical expressions of anisotropic plastiestress Jields at the slowly steadyhe slowly steady propagatin tips of plane and anti-phane strain,Applying these general analytical expressions to the concrete cracks the attchvtical expressions of anisotropie plastic stress fields at the slowly steady propagating tips of Motle I and Motle III cracks are obtained. For the isolropic plastic material, the anisotropic plastic stress fields at a slowly propagating crack tip become the perfeeby plastic mress fields
基金The project supported by the National Natural Science Foundation of China
文摘The stress and deformation fields near the tip of an anti-plane crack growing quasi-statically along an interface of elastic perfectly plastic materials are given in this paper. A family of solutions for the growing crack fields is found covering all admissible crack line shear stress ratios.
文摘Under the hypothesis that all the perfectly plastic stress components at a orach tip are the functions of θ only, making use of yield conditions and equilibrium equations. we derive the generally analytical expressions of the perfectly plastic stress field at a crack tip. Applying these generally analytical expressions to the concrete cracks, the analytical expressions of perfectly plastic stress fields at the tips of Mode Ⅰ Mode Ⅱ, Mode Ⅲ and Mixed Mode Ⅰ-Ⅱ cracks are obtained.