The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαph...The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαphase,were examined in a temperature range of 473 K to 623 K.The microstructural refinement of this alloy was achieved by employing high-ratio differential speed rolling.The best superplasticity was achieved at 523 K and at strain rates of 10^(-4)-5×10^(-4)s^(-1),where tensile elongations of 550±600%were obtained.During the heating and holding stage of the tensile samples prior to tensile loading,a significant increase in grain size was observed at temperatures above 573 K.Therefore,it was important to consider this effect when analyzing and understanding the superplastic deformation behavior and mechanisms.In the investigated strain rate range,the superplastic flow at low strain rates was governed by lattice diffusion-controlled grain boundary sliding,while at high strain rates,lattice diffusion-controlled dislocation climb creep was the rate-controlling deformation mechanism.It was concluded that solute drag creep is unlikely to occur.During the late stages of deformation at 523 K,it was observed that grain boundary sliding led to the agglomeration of theαphase,resulting in significant strain hardening.Deformation mechanism maps were constructed forβ-Mg-Li alloys in the form of 2D and 3D formats as a function of strain rate,stress,temperature,and grain size,using the constitutive equations for various deformation mechanisms derived based on the data of the current tests.展开更多
In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volu...In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volume specific heat,are tested.Via the split Hopkinson pressure bar(SHPB)and flyerplate impact experiments,the relationship between equivalent stress and equivalent plastic strain of the material is studied at temperatures of 298-823 K and under strain rates of 1×10^(-3)-5.2×10^(3)s^(-1),and the Hugoniot relationship at impact pressures of 1.46-17.25 GPa and impact velocities of 108-942 m/s is obtained.Evolution of the Cu-10Ta microstructure that occurs during high-strain-rate impact is analyzed.Results indicate that the Cu-10Ta alloy possesses good thermal stability,and at ambient temperatures of up to 50%its melting point,stress softening of less than 15%of the initial strength is observed.A modified J-C constitutive model is employed to accurately predict the variation of yield strength with strain rate.Under strong impact,the copper phase is identified as the primary source of plastic deformation in the Cu-10Ta alloy,while significant deformation of the high-strength tantalum particles is less pronounced.Furthermore,the longitudinal wave speed D is found to correlate linearly with the particle velocity u upon strong impact.Analysis reveals that the sound speed and spallation strength of the alloy increase with increasing impact pressure.展开更多
Fracture in ductile materials often occurs in conjunction with plastic deformation.However,in the bond-based peridynamic(BB-PD)theory,the classic mechanical stress is not defined inherently.This makes it difficult to ...Fracture in ductile materials often occurs in conjunction with plastic deformation.However,in the bond-based peridynamic(BB-PD)theory,the classic mechanical stress is not defined inherently.This makes it difficult to describe plasticity directly using the classical plastic theory.To address the above issue,a unified bond-based peridynamics model was proposed as an effective tool to solve elastoplastic fracture problems.Compared to the existing models,the proposed model directly describes the elastoplastic theory at the bond level without the need for additional calculation means.The results obtained in the context of this model are shown to be consistent with FEM results in regard to force-displacement curves,displacement fields,stress fields,and plastic deformation regions.The model exhibits good capability of capturing crack propagation in ductile material failure problems.展开更多
Modulation of Si-O bonds under mild conditions has been a challenging issue in the field of material science,which is critical to manufacture highperformance silica-based optical and photonic devices.Herein,we introdu...Modulation of Si-O bonds under mild conditions has been a challenging issue in the field of material science,which is critical to manufacture highperformance silica-based optical and photonic devices.Herein,we introduce a nondestructive technique to achieve Si-O bond rearrangement,leading to plastic deformation and photoluminescence enhancement of amorphous silica nanoparticles using supercritical carbon dioxides in EtOH/H_(2)O solution under mild temperature.Specifically,plastic deformation is achieved by treating hollow mesoporous silica nanospheres using supercritical CO_(2)at 40°C under 20 MPa.Experimental and theoretical studies revealed the critical role of supercritical CO_(2)in the plastic deformation process,which can be intercalated into the hollow mesoporous silica nanospheres with anisotropic stresses and induces the rearrangement of Si-O bonds and transformation of ring structures.This work suggests a novel approach to engineer high-performance nano-silica glass components for numerous optical and photonic devices under mild condition.展开更多
Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparative...Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP.展开更多
Based on the local canning compression,severe plastic deformation(SPD) is able to lead to the almost complete amorphous nickel-titanium shape memory alloy(NiTi SMA),in which a small amount of retained nanocrystall...Based on the local canning compression,severe plastic deformation(SPD) is able to lead to the almost complete amorphous nickel-titanium shape memory alloy(NiTi SMA),in which a small amount of retained nanocrystalline phase is embedded in the amorphous matrix.Crystallization of amorphous NiTi alloy annealed at 573,723 and 873 K was investigated,respectively.The crystallization kinetics of the amorphous NiTi alloy can be mathematically described by the Johnson-MehlAvrami-Kolmogorov(JMAK) equation.NiTi SMA with a complete nanocrystalline phase is obtained in the case of annealing at 573 K and 723 K,where martensite phase transformation is suppressed due to the constraint of the grain boundaries.Crystallization of amorphous NiTi alloy at 873 K leads to the coarse-grained NiTi sample,where(001) martensite compound twin is observed at room temperature.It can be found that the martensitic twins preferentially nucleate at the grain boundary and they grow up towards the two different grains.SPD based on the local canning compression and subsequent annealing provides a new approach to obtain the nanocrystalline NiTi SMA.展开更多
The effects of plastic deformation on precipitation behavior and tensile fracture behavior of Mg-10Gd-3Y-0.6Zr alloy were investigated.The results indicate that more precipitation cores can be provided by the crystal ...The effects of plastic deformation on precipitation behavior and tensile fracture behavior of Mg-10Gd-3Y-0.6Zr alloy were investigated.The results indicate that more precipitation cores can be provided by the crystal defects caused by the plastic deformation,as well as increasing the amount of β' phases,and the formation of precipitations at grain boundaries and interfaces between the twins and matrix.Because of an increase in precipitations,the dislocation slipping during deformation process is effectively hindered and the matrix is strengthened,especially for the 2% deformed alloy which can achieve a good combination of strength and ductility.With increasing the plastic deformation,the microcracks occur at the interface between grain boundary precipitations and matrix,and then propagate intergranularly.When intergranular fracture combines with the formation of smoothing facets on the fracture surface,the tensile properties decrease.展开更多
As a new attempt, local canning compression was applied in order to implement large plastic deformation of nickel-titanium shape memory alloy (NiTi SMA) at room temperature. The plastic mechanics of local canning co...As a new attempt, local canning compression was applied in order to implement large plastic deformation of nickel-titanium shape memory alloy (NiTi SMA) at room temperature. The plastic mechanics of local canning compression of NiTi SMA was analyzed according to the slab method as the well as plastic yield criterion. Transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) were used to study the microstructural evolution as well as deformation behavior of NiTi samples under local canning compression. Increasing the hydrostatic pressure with the increase in the outer diameters of the steel cans is responsible for suppressing the initiation and growth of the micro-cracks, which contributes to enhancing the plasticity ofNiTi SMA and avoiding the occurrence of brittle fracture. Plastic deformation of NiTi SMA under a three-dimensional compressive stress state meets von-Mises yield criterion at the true strains ranging from about 0.15 to 0.50, while in the case of larger plastic strain, von-Mises yield criterion is unable to be met since the amorphous phase arises in the deformed NiTi sample.展开更多
A numerical analysis of mechanical behavior of aluminum alloy sheet under cyclic plastic deformation was investigated.Forming limit at fracture was derived from Cockcroft-Latham ductile damage criterion.The strain pat...A numerical analysis of mechanical behavior of aluminum alloy sheet under cyclic plastic deformation was investigated.Forming limit at fracture was derived from Cockcroft-Latham ductile damage criterion.The strain path of bending center of incremental roller hemming could be accepted as a kind of plane strain bending deformation process.Incremental rope roller hemming could be used to alleviate ductile fracture behavior by changing the stress state of the hemming-effected area.SEM observation on the fracture surface indicates that cyclic plastic deformation affects ductile fracture mechanism.展开更多
The viscoplastic friction and nanostructure formation mechanism of laser-clad Co-based coating were studied by rotary friction between laser-clad Co-Cr-Ni-Mo coating and WC-Co rod.The friction coefficient,friction int...The viscoplastic friction and nanostructure formation mechanism of laser-clad Co-based coating were studied by rotary friction between laser-clad Co-Cr-Ni-Mo coating and WC-Co rod.The friction coefficient,friction interface temperature and axial displacement—time curves during rotary friction process were measured.The results showed that all the curves firstly experienced rising stage and then steady stage.The rising stage corresponded to sliding friction while the steady stage corresponded to viscoplastic friction.After viscoplastic friction processing,three typical zones of viscoplastic deformation zone,thermo-mechanically affected zone,and original laser-clad zone can be observed successively from the friction surface to the interior.The viscoplastic deformation significantly crushed the network M23C7 phase in original laser-clad zone and made it dispersively distributed with equiaxial shape and in nano-scale.The viscoplastic zone,in width of 37-131 μm,is mainly characterized by refined M23C7 and α-Co phase with grain size bellow 50 nm,and even a small quantity of amorphous.Thus,the hardness of viscoplastic zone about HV997 was improved compared with the hardness of original laser-clad zone about HV600.展开更多
In order to explore the exact nature of deformation defects previously observed in nanostructured Al-Mg alloys subjected to severe plastic deformation, a more thorough examination of the radiation effect on the format...In order to explore the exact nature of deformation defects previously observed in nanostructured Al-Mg alloys subjected to severe plastic deformation, a more thorough examination of the radiation effect on the formation of the planar defects in the high pressure torsion (HPT) alloys was conducted using high-resolution transmission electron microscopy (HRTEM). The results show that high density defects in the HRTEM images disappear completely when these images are exposed under the electron beam for some duration of time. At the same time, lattice defects are never observed within no-defect areas even when the beam-exposure increases to the degree that holes appear in the areas. Therefore, it is confirmed that the planar defects observed in the HPT alloys mainly result from the significant plastic deformation and are not due to the radiation effect during HRTEM observation.展开更多
Some applications of crystal plasticity modeling in equal channel angular extrusion(ECAE) of face-centered cubic metals were highlighted.The results show that such simulations can elucidate the dependency of grain r...Some applications of crystal plasticity modeling in equal channel angular extrusion(ECAE) of face-centered cubic metals were highlighted.The results show that such simulations can elucidate the dependency of grain refinement efficiency on processing route and the directionality of substructure development,which cannot be explained by theories that consider only the macroscopic deformation behavior.They can also capture satisfactorily the orientation stability and texture evolution under various processing conditions.It is demonstrated that crystal plasticity models are useful tools in exploring the crystallographic nature of grain deformation and associated behavior that are overlooked or sometimes erroneously interpreted by existing phenomenological theories.展开更多
With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBS...With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBSD speed (up to 1100 patterns per second) contributes that the number of published articles related to EBSD has been increasing sharply year by year. This paper reviews the sample preparation, parameters optimization and analysis of EBSD technique, emphasizing on the investigation of ultrafine grained and nanostructured materials processed by severe plastic deformation (SPD). Detailed and practical parameters of the electropolishing, silica polishing and ion milling have been summarized. It is shown that ion milling is a real universal and promising polishing method for EBSD preparation of almost all materials. There exists a maximum value of indexed points as a function of step size. The optimum step size depends on the magnification and the board resolution/electronic step size. Grains/subgrains and texture, and grain boundary structure are readily obtained by EBSD. Strain and stored energy may be analyzed by EBSD.展开更多
A thickness strain model of aluminium alloy plate under plastic deformation,based on thin plate assumption was proposed.It is found that when ratio of stress fractions is constant during in-plane loading,ratios of str...A thickness strain model of aluminium alloy plate under plastic deformation,based on thin plate assumption was proposed.It is found that when ratio of stress fractions is constant during in-plane loading,ratios of strain components under various loading conditions are linearly related and these points of ratios form a η-η line.Under these simple loadings,strains in thickness direction can be easily calculated by the η-η line equation without integral and differential work.When the plate is under more complicated loading conditions,the thickness can be computed by the proposed optimization and piecewise calculation model.Validation computations indicate that the relative error of the results of the presented model is less than 0.75% compared with the proven theories and FE simulation.Therefore,the developed model can be applied to engineering calculation,e.g.pre-stretching analysis of aerospace aluminium thick plate,with acceptable accuracy.展开更多
Experiments and visco-plastic self-consistent (VPSC) simulations were used to quantify the amount of twinning and the relationship to stress?strain behavior in a textured Mg?3Al?1Zn plate. Two different compression di...Experiments and visco-plastic self-consistent (VPSC) simulations were used to quantify the amount of twinning and the relationship to stress?strain behavior in a textured Mg?3Al?1Zn plate. Two different compression directions were utilized to favor{1012} extension or{1011} compression twinning.{1012} twins nucleate at the beginning of plastic deformation and grow to consume the parent grains completely. During compression along the normal direction,{1011} twinning and{1011}?{1012} double twinning start at strain of 0.05, and the number of twins increases until rupture, above strain of 0.15.{1011} and{1011}?{1012} twinning also occur during compression along the transverse direction, start at strain of 0.06 and then multiply in grains totally reoriented by{1012} twins. Using suitable parameters, the VPSC model can accurately predict the occurrence of extension, compression and double-twinning as well as the flow stresses and deformed textures. According to VPSC simulations, twinning and slip have the same latent hardening parameters.展开更多
The use of magnesium in orthopedic and cardiovascular applications has been widely attracted by diminishing the risk of abnormal interaction of the implant with the body tissue and eliminating the second surgery to re...The use of magnesium in orthopedic and cardiovascular applications has been widely attracted by diminishing the risk of abnormal interaction of the implant with the body tissue and eliminating the second surgery to remove it from the body.Nevertheless,the fast degradation rate and generally inhomogeneous corrosion subsequently caused a decline in the mechanical strength of Mg during the healing period.Numerous researches have been conducted on the influences of various severe plastic deformation(SPD)processes on magnesium bioalloys and biocomposites.This paper strives to summarize the various SPD techniques used to achieve magnesium with an ultrafine-grained(UFG)structure.Moreover,the effects of various severe plastic deformation methods on magnesium microstructure,mechanical properties,and corrosion behavior have been discussed.Overall,this review intends to clarify the different potentials of applying SPD processes to the magnesium alloys and composites to augment their usage in biomedical applications.展开更多
The mechanical properties of the Mg97ZnlY2 extruded alloy containing the long-period stacking ordered phase, the so-called LPSO-phase, with a volume fraction of 24%-25%, were examined by compression tests and cyclic t...The mechanical properties of the Mg97ZnlY2 extruded alloy containing the long-period stacking ordered phase, the so-called LPSO-phase, with a volume fraction of 24%-25%, were examined by compression tests and cyclic tension-compression deformation tests. The plastic behavior of the extruded alloys with compositions of Mg99.2Zn0.2Y0.6 and Mg89Zn4Y7 (molar fraction, %), which were almost the same compositions of Mg matrix phase and LPSO phase in Mg97Zn1Y2 Mg/LPSO two-phase alloy, respectively, were also prepared. By comparing their mechanical properties, the strengthening mechanisms operating in the Mg97Zn1 Y2 extruded alloy were discussed. Existence of the LPSO-phase strongly enhanced the refinement of Mg matrix grain size during extrusion, which led to a large increment of the strength of alloy. In addition, the LPSO-phases, which were aligned along the extrusion direction in Mg97Zn1Y2 extruded alloy, acted as hardening phases, just like reinforced fibers.展开更多
An investigation on the plastic behavior of AZ31 magnesium alloy under ultrasonic vibration(with a frequency of 15 kHz and a maximum output of 2 kW) during the process of tension at room temperature was conducted to...An investigation on the plastic behavior of AZ31 magnesium alloy under ultrasonic vibration(with a frequency of 15 kHz and a maximum output of 2 kW) during the process of tension at room temperature was conducted to reveal the volume effect of the vibrated plastic deformation of AZ31.The characteristics of mechanical properties and microstructures of AZ31 under routine and vibrated tensile processes with different amplitudes were compared.It is found that ultrasonic vibration has a remarkable influence on the plastic behavior of AZ31 which can be summarized into two opposite aspects:the softening effect which reduces the flow resistance and improves the plasticity,and the hardening effect which decreases the formability.When a lower amplitude or vibration energy is applied to the tensile sample,the softening effect dominates,leading to a decrease of AZ31 deformation resistance with an increase of formability.Under the application of a high-vibrating amplitude,the hardening effect dominates,resulting in the decline of plasticity and brittle fracture of the samples.展开更多
Mg and its alloys have continued to attract interest for several structural and super-sensitive applications because of their light weight and good combination of engineering properties.However for some of these appli...Mg and its alloys have continued to attract interest for several structural and super-sensitive applications because of their light weight and good combination of engineering properties.However for some of these applications,high plastic deformability is required to achieve desired component shapes and configurations;unfortunately,Mg and its alloys have low formability.Scientifically,the plastic behaviour of Mg and its alloys ranks among the most complex and difficult to reconcile in metallic material systems.But basically,the HCP crystal structure coupled with low stacking fault energies(SFE)are largely linked to the poor ductility exhibited by Mg alloys.These innate material characteristics have regrettably limited wide spread applicability of Mg and its alloys.Several research efforts aimed at exploring processing strategies to make these alloys more amenable for high formability–mediated engineering use have been reported and still ongoing.This paper reviews the structural metallurgy of Mg alloys and its influence on mechanical behaviour,specifically,plasticity characteristics.It also concisely presents various processing routes(Alloying,Traditional Forming and Severe Plastic Deformation(SPD))which have been explored to enhance plastic deformability in Mg and its alloys.Grain refinement and homogenising of phases,reducing CRSS between slip modes,twinning suppression to activate non-basal slip,and weakening and randomisation of the basal texture were observed as the formability enhancing strategies explored in the reviewed processes.While identifying the limitations of these strategies,further areas to be explored for enhancing plasticity of Mg alloys are highlighted.展开更多
Capability of a novel severe plastic deformation(SPD)method of hydrostatic cyclic extrusion compression(HCEC)for processing of hcp metallic rods with high length to diameter ratios was investigated.The process was con...Capability of a novel severe plastic deformation(SPD)method of hydrostatic cyclic extrusion compression(HCEC)for processing of hcp metallic rods with high length to diameter ratios was investigated.The process was conducted in two consecutive cycles on the AZ91 magnesium alloy,and microstructural evolution,mechanical properties and corrosion behavior were investigated.The results showed that the HCEC process was successively capable of producing ultrafine-grained long magnesium rods.Its ability in improving strength and ductility simultaneously was also shown.The ultimate tensile strength and elongation to failure of the sample after the second cycle of the process were improved to be 2.46 and 3.8 times those of the as-cast specimen,respectively.Distribution of the microhardness after the second cycle was uniform and its average value was increased by 116%.The potentials derived from the polarization curves were high and the currents were much low for the processed samples.Also,the diameter of the capacitive arcs derived from the Nyquist curves was large in the HCEC processed samples.The finite element analysis indicated the independency of HCEC load from the length in comparison to the conventional CEC.HCEC is a unique SPD method,which can produce long ultrafine-grained rods with a combination of superior mechanical and corrosion properties.展开更多
文摘The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαphase,were examined in a temperature range of 473 K to 623 K.The microstructural refinement of this alloy was achieved by employing high-ratio differential speed rolling.The best superplasticity was achieved at 523 K and at strain rates of 10^(-4)-5×10^(-4)s^(-1),where tensile elongations of 550±600%were obtained.During the heating and holding stage of the tensile samples prior to tensile loading,a significant increase in grain size was observed at temperatures above 573 K.Therefore,it was important to consider this effect when analyzing and understanding the superplastic deformation behavior and mechanisms.In the investigated strain rate range,the superplastic flow at low strain rates was governed by lattice diffusion-controlled grain boundary sliding,while at high strain rates,lattice diffusion-controlled dislocation climb creep was the rate-controlling deformation mechanism.It was concluded that solute drag creep is unlikely to occur.During the late stages of deformation at 523 K,it was observed that grain boundary sliding led to the agglomeration of theαphase,resulting in significant strain hardening.Deformation mechanism maps were constructed forβ-Mg-Li alloys in the form of 2D and 3D formats as a function of strain rate,stress,temperature,and grain size,using the constitutive equations for various deformation mechanisms derived based on the data of the current tests.
文摘In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volume specific heat,are tested.Via the split Hopkinson pressure bar(SHPB)and flyerplate impact experiments,the relationship between equivalent stress and equivalent plastic strain of the material is studied at temperatures of 298-823 K and under strain rates of 1×10^(-3)-5.2×10^(3)s^(-1),and the Hugoniot relationship at impact pressures of 1.46-17.25 GPa and impact velocities of 108-942 m/s is obtained.Evolution of the Cu-10Ta microstructure that occurs during high-strain-rate impact is analyzed.Results indicate that the Cu-10Ta alloy possesses good thermal stability,and at ambient temperatures of up to 50%its melting point,stress softening of less than 15%of the initial strength is observed.A modified J-C constitutive model is employed to accurately predict the variation of yield strength with strain rate.Under strong impact,the copper phase is identified as the primary source of plastic deformation in the Cu-10Ta alloy,while significant deformation of the high-strength tantalum particles is less pronounced.Furthermore,the longitudinal wave speed D is found to correlate linearly with the particle velocity u upon strong impact.Analysis reveals that the sound speed and spallation strength of the alloy increase with increasing impact pressure.
基金The corresponding author Lisheng Liu acknowledges the support from the National Natural Science Foundation of China(No.11972267)The corresponding author Xin Lai acknowledges the support from the National Natural Science Foundation of China(No.11802214).
文摘Fracture in ductile materials often occurs in conjunction with plastic deformation.However,in the bond-based peridynamic(BB-PD)theory,the classic mechanical stress is not defined inherently.This makes it difficult to describe plasticity directly using the classical plastic theory.To address the above issue,a unified bond-based peridynamics model was proposed as an effective tool to solve elastoplastic fracture problems.Compared to the existing models,the proposed model directly describes the elastoplastic theory at the bond level without the need for additional calculation means.The results obtained in the context of this model are shown to be consistent with FEM results in regard to force-displacement curves,displacement fields,stress fields,and plastic deformation regions.The model exhibits good capability of capturing crack propagation in ductile material failure problems.
基金the National Natural Science Foundation of China(Nos.51173170,21703207,21773216)the joint project from the Henan-Provincial and the China-National Natural Science Foundations(Project No.U2004208)
文摘Modulation of Si-O bonds under mild conditions has been a challenging issue in the field of material science,which is critical to manufacture highperformance silica-based optical and photonic devices.Herein,we introduce a nondestructive technique to achieve Si-O bond rearrangement,leading to plastic deformation and photoluminescence enhancement of amorphous silica nanoparticles using supercritical carbon dioxides in EtOH/H_(2)O solution under mild temperature.Specifically,plastic deformation is achieved by treating hollow mesoporous silica nanospheres using supercritical CO_(2)at 40°C under 20 MPa.Experimental and theoretical studies revealed the critical role of supercritical CO_(2)in the plastic deformation process,which can be intercalated into the hollow mesoporous silica nanospheres with anisotropic stresses and induces the rearrangement of Si-O bonds and transformation of ring structures.This work suggests a novel approach to engineer high-performance nano-silica glass components for numerous optical and photonic devices under mild condition.
基金Project(BK2012715)supported by the Basic Research Program(Natural Science Foundation)of Jiangsu Province,ChinaProject(14KJA430002)supported by the Key University Science Research Project of Jiangsu Province,China+3 种基金Project(50971087)supported by the National Natural Science Foundation of ChinaProjects(11JDG070,11JDG140)supported by the Senior Talent Research Foundation of Jiangsu University,ChinaProject(hsm1301)supported by the Foundation of the Jiangsu Province Key Laboratory of High-end Structural Materials,ChinaProject(Kjsmcx2011004)supported by the Foundation of the Jiangsu Province Key Laboratory of Materials Tribology,China
文摘Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP.
基金Project (51071056) supported by the National Natural Science Foundation of ChinaProject (HEUCF201317002) supported by the Fundamental Research Funds for the Central Universities of China
文摘Based on the local canning compression,severe plastic deformation(SPD) is able to lead to the almost complete amorphous nickel-titanium shape memory alloy(NiTi SMA),in which a small amount of retained nanocrystalline phase is embedded in the amorphous matrix.Crystallization of amorphous NiTi alloy annealed at 573,723 and 873 K was investigated,respectively.The crystallization kinetics of the amorphous NiTi alloy can be mathematically described by the Johnson-MehlAvrami-Kolmogorov(JMAK) equation.NiTi SMA with a complete nanocrystalline phase is obtained in the case of annealing at 573 K and 723 K,where martensite phase transformation is suppressed due to the constraint of the grain boundaries.Crystallization of amorphous NiTi alloy at 873 K leads to the coarse-grained NiTi sample,where(001) martensite compound twin is observed at room temperature.It can be found that the martensitic twins preferentially nucleate at the grain boundary and they grow up towards the two different grains.SPD based on the local canning compression and subsequent annealing provides a new approach to obtain the nanocrystalline NiTi SMA.
基金Project(IRT0713) supported by the Program for Changjiang Scholars and Innovative Research Team in Chinese UniversityProjects(2007CB613701,2007CB613702) supported by the National Basic Research Program of China
文摘The effects of plastic deformation on precipitation behavior and tensile fracture behavior of Mg-10Gd-3Y-0.6Zr alloy were investigated.The results indicate that more precipitation cores can be provided by the crystal defects caused by the plastic deformation,as well as increasing the amount of β' phases,and the formation of precipitations at grain boundaries and interfaces between the twins and matrix.Because of an increase in precipitations,the dislocation slipping during deformation process is effectively hindered and the matrix is strengthened,especially for the 2% deformed alloy which can achieve a good combination of strength and ductility.With increasing the plastic deformation,the microcracks occur at the interface between grain boundary precipitations and matrix,and then propagate intergranularly.When intergranular fracture combines with the formation of smoothing facets on the fracture surface,the tensile properties decrease.
基金Project(51071056)supported by the National Natural Science Foundation of ChinaProjects(HEUCF121712,HEUCF201317002)supported by the Fundamental Research Funds for the Central Universities of China
文摘As a new attempt, local canning compression was applied in order to implement large plastic deformation of nickel-titanium shape memory alloy (NiTi SMA) at room temperature. The plastic mechanics of local canning compression of NiTi SMA was analyzed according to the slab method as the well as plastic yield criterion. Transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) were used to study the microstructural evolution as well as deformation behavior of NiTi samples under local canning compression. Increasing the hydrostatic pressure with the increase in the outer diameters of the steel cans is responsible for suppressing the initiation and growth of the micro-cracks, which contributes to enhancing the plasticity ofNiTi SMA and avoiding the occurrence of brittle fracture. Plastic deformation of NiTi SMA under a three-dimensional compressive stress state meets von-Mises yield criterion at the true strains ranging from about 0.15 to 0.50, while in the case of larger plastic strain, von-Mises yield criterion is unable to be met since the amorphous phase arises in the deformed NiTi sample.
基金Project(2010CB731703) supported by the National Basic Research Program of China Project(0804) supported by the Shanghai Automotive Industry Corporation Foundation,ChinaProject(MSV-2010-03) supported by State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,China
文摘A numerical analysis of mechanical behavior of aluminum alloy sheet under cyclic plastic deformation was investigated.Forming limit at fracture was derived from Cockcroft-Latham ductile damage criterion.The strain path of bending center of incremental roller hemming could be accepted as a kind of plane strain bending deformation process.Incremental rope roller hemming could be used to alleviate ductile fracture behavior by changing the stress state of the hemming-effected area.SEM observation on the fracture surface indicates that cyclic plastic deformation affects ductile fracture mechanism.
基金Project(51101126) supported by the National Natural Science Foundation of ChinaProjects(20110491684,2012T50817) supported by the China Postdoctoral Science FoundationProject(20110942K) supported by the Open Fund of State Key Laboratory of Powder Metallurgy,China
文摘The viscoplastic friction and nanostructure formation mechanism of laser-clad Co-based coating were studied by rotary friction between laser-clad Co-Cr-Ni-Mo coating and WC-Co rod.The friction coefficient,friction interface temperature and axial displacement—time curves during rotary friction process were measured.The results showed that all the curves firstly experienced rising stage and then steady stage.The rising stage corresponded to sliding friction while the steady stage corresponded to viscoplastic friction.After viscoplastic friction processing,three typical zones of viscoplastic deformation zone,thermo-mechanically affected zone,and original laser-clad zone can be observed successively from the friction surface to the interior.The viscoplastic deformation significantly crushed the network M23C7 phase in original laser-clad zone and made it dispersively distributed with equiaxial shape and in nano-scale.The viscoplastic zone,in width of 37-131 μm,is mainly characterized by refined M23C7 and α-Co phase with grain size bellow 50 nm,and even a small quantity of amorphous.Thus,the hardness of viscoplastic zone about HV997 was improved compared with the hardness of original laser-clad zone about HV600.
基金Project (50971087) supported by the National Natural Science Foundation of ChinaProject (BK2012715) supported by the Basic Research Program (Natural Science Foundation) of Jiangsu Province, China+1 种基金Project (10371800) supported by the Research Council of Norway under the NEW Light (NEWLIGHT) Metals of the Strategic Area (SA) MaterialsProject (11JDG070) supported by the Senior Talent Research Foundation of Jiangsu University, China
文摘In order to explore the exact nature of deformation defects previously observed in nanostructured Al-Mg alloys subjected to severe plastic deformation, a more thorough examination of the radiation effect on the formation of the planar defects in the high pressure torsion (HPT) alloys was conducted using high-resolution transmission electron microscopy (HRTEM). The results show that high density defects in the HRTEM images disappear completely when these images are exposed under the electron beam for some duration of time. At the same time, lattice defects are never observed within no-defect areas even when the beam-exposure increases to the degree that holes appear in the areas. Therefore, it is confirmed that the planar defects observed in the HPT alloys mainly result from the significant plastic deformation and are not due to the radiation effect during HRTEM observation.
基金Projects(50871040,51271204) supported by the National Natural Science Foundation of ChinaProject(2012CB619500) supported by the National Basic Research Program of ChinaProject(NCET-06-0741) supported by the Program for New Century Excellent Talents, China
文摘Some applications of crystal plasticity modeling in equal channel angular extrusion(ECAE) of face-centered cubic metals were highlighted.The results show that such simulations can elucidate the dependency of grain refinement efficiency on processing route and the directionality of substructure development,which cannot be explained by theories that consider only the macroscopic deformation behavior.They can also capture satisfactorily the orientation stability and texture evolution under various processing conditions.It is demonstrated that crystal plasticity models are useful tools in exploring the crystallographic nature of grain deformation and associated behavior that are overlooked or sometimes erroneously interpreted by existing phenomenological theories.
基金Project (192450/I30) supported by the Norwegian Research Council under the Strategic University Program
文摘With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBSD speed (up to 1100 patterns per second) contributes that the number of published articles related to EBSD has been increasing sharply year by year. This paper reviews the sample preparation, parameters optimization and analysis of EBSD technique, emphasizing on the investigation of ultrafine grained and nanostructured materials processed by severe plastic deformation (SPD). Detailed and practical parameters of the electropolishing, silica polishing and ion milling have been summarized. It is shown that ion milling is a real universal and promising polishing method for EBSD preparation of almost all materials. There exists a maximum value of indexed points as a function of step size. The optimum step size depends on the magnification and the board resolution/electronic step size. Grains/subgrains and texture, and grain boundary structure are readily obtained by EBSD. Strain and stored energy may be analyzed by EBSD.
基金Project(51475483)supported by the National Natural Science Foundation of ChinaProject(2014FJ3002)supported by Science and Technology Project of Hunan Province,ChinaProject supported by Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘A thickness strain model of aluminium alloy plate under plastic deformation,based on thin plate assumption was proposed.It is found that when ratio of stress fractions is constant during in-plane loading,ratios of strain components under various loading conditions are linearly related and these points of ratios form a η-η line.Under these simple loadings,strains in thickness direction can be easily calculated by the η-η line equation without integral and differential work.When the plate is under more complicated loading conditions,the thickness can be computed by the proposed optimization and piecewise calculation model.Validation computations indicate that the relative error of the results of the presented model is less than 0.75% compared with the proven theories and FE simulation.Therefore,the developed model can be applied to engineering calculation,e.g.pre-stretching analysis of aerospace aluminium thick plate,with acceptable accuracy.
基金Project(2013CB632204)supported by the National Basic Research Program of ChinaProject(51350110332)supported by the National Natural Science Foundation of China
文摘Experiments and visco-plastic self-consistent (VPSC) simulations were used to quantify the amount of twinning and the relationship to stress?strain behavior in a textured Mg?3Al?1Zn plate. Two different compression directions were utilized to favor{1012} extension or{1011} compression twinning.{1012} twins nucleate at the beginning of plastic deformation and grow to consume the parent grains completely. During compression along the normal direction,{1011} twinning and{1011}?{1012} double twinning start at strain of 0.05, and the number of twins increases until rupture, above strain of 0.15.{1011} and{1011}?{1012} twinning also occur during compression along the transverse direction, start at strain of 0.06 and then multiply in grains totally reoriented by{1012} twins. Using suitable parameters, the VPSC model can accurately predict the occurrence of extension, compression and double-twinning as well as the flow stresses and deformed textures. According to VPSC simulations, twinning and slip have the same latent hardening parameters.
文摘The use of magnesium in orthopedic and cardiovascular applications has been widely attracted by diminishing the risk of abnormal interaction of the implant with the body tissue and eliminating the second surgery to remove it from the body.Nevertheless,the fast degradation rate and generally inhomogeneous corrosion subsequently caused a decline in the mechanical strength of Mg during the healing period.Numerous researches have been conducted on the influences of various severe plastic deformation(SPD)processes on magnesium bioalloys and biocomposites.This paper strives to summarize the various SPD techniques used to achieve magnesium with an ultrafine-grained(UFG)structure.Moreover,the effects of various severe plastic deformation methods on magnesium microstructure,mechanical properties,and corrosion behavior have been discussed.Overall,this review intends to clarify the different potentials of applying SPD processes to the magnesium alloys and composites to augment their usage in biomedical applications.
基金supported by the project"Development of Key Technology for Next-generation Heat-resistant Magnesium Alloys,Kumamoto Prefecture Collaboration of Regional Entities for the Advancement of Technological Excellence"from Japan Science and Technology Agencyby funds from the"Priority Assistance of the Formation of Worldwide Renowned Centers of Research-The 21st Century COE Program and Global COE Program(Project:Center of Excellence for Advanced Structural and Functional Materials Design)"a Grant-in-Aid for Scientific Research and Development from the Ministry of Education,Culture,Sports,Science and Technology of Japan
文摘The mechanical properties of the Mg97ZnlY2 extruded alloy containing the long-period stacking ordered phase, the so-called LPSO-phase, with a volume fraction of 24%-25%, were examined by compression tests and cyclic tension-compression deformation tests. The plastic behavior of the extruded alloys with compositions of Mg99.2Zn0.2Y0.6 and Mg89Zn4Y7 (molar fraction, %), which were almost the same compositions of Mg matrix phase and LPSO phase in Mg97Zn1Y2 Mg/LPSO two-phase alloy, respectively, were also prepared. By comparing their mechanical properties, the strengthening mechanisms operating in the Mg97Zn1 Y2 extruded alloy were discussed. Existence of the LPSO-phase strongly enhanced the refinement of Mg matrix grain size during extrusion, which led to a large increment of the strength of alloy. In addition, the LPSO-phases, which were aligned along the extrusion direction in Mg97Zn1Y2 extruded alloy, acted as hardening phases, just like reinforced fibers.
基金supported by the Natural Science Foundation Project of Chongqing Science and Technology Commission,China (No.2009BB4186)
文摘An investigation on the plastic behavior of AZ31 magnesium alloy under ultrasonic vibration(with a frequency of 15 kHz and a maximum output of 2 kW) during the process of tension at room temperature was conducted to reveal the volume effect of the vibrated plastic deformation of AZ31.The characteristics of mechanical properties and microstructures of AZ31 under routine and vibrated tensile processes with different amplitudes were compared.It is found that ultrasonic vibration has a remarkable influence on the plastic behavior of AZ31 which can be summarized into two opposite aspects:the softening effect which reduces the flow resistance and improves the plasticity,and the hardening effect which decreases the formability.When a lower amplitude or vibration energy is applied to the tensile sample,the softening effect dominates,leading to a decrease of AZ31 deformation resistance with an increase of formability.Under the application of a high-vibrating amplitude,the hardening effect dominates,resulting in the decline of plasticity and brittle fracture of the samples.
文摘Mg and its alloys have continued to attract interest for several structural and super-sensitive applications because of their light weight and good combination of engineering properties.However for some of these applications,high plastic deformability is required to achieve desired component shapes and configurations;unfortunately,Mg and its alloys have low formability.Scientifically,the plastic behaviour of Mg and its alloys ranks among the most complex and difficult to reconcile in metallic material systems.But basically,the HCP crystal structure coupled with low stacking fault energies(SFE)are largely linked to the poor ductility exhibited by Mg alloys.These innate material characteristics have regrettably limited wide spread applicability of Mg and its alloys.Several research efforts aimed at exploring processing strategies to make these alloys more amenable for high formability–mediated engineering use have been reported and still ongoing.This paper reviews the structural metallurgy of Mg alloys and its influence on mechanical behaviour,specifically,plasticity characteristics.It also concisely presents various processing routes(Alloying,Traditional Forming and Severe Plastic Deformation(SPD))which have been explored to enhance plastic deformability in Mg and its alloys.Grain refinement and homogenising of phases,reducing CRSS between slip modes,twinning suppression to activate non-basal slip,and weakening and randomisation of the basal texture were observed as the formability enhancing strategies explored in the reviewed processes.While identifying the limitations of these strategies,further areas to be explored for enhancing plasticity of Mg alloys are highlighted.
文摘Capability of a novel severe plastic deformation(SPD)method of hydrostatic cyclic extrusion compression(HCEC)for processing of hcp metallic rods with high length to diameter ratios was investigated.The process was conducted in two consecutive cycles on the AZ91 magnesium alloy,and microstructural evolution,mechanical properties and corrosion behavior were investigated.The results showed that the HCEC process was successively capable of producing ultrafine-grained long magnesium rods.Its ability in improving strength and ductility simultaneously was also shown.The ultimate tensile strength and elongation to failure of the sample after the second cycle of the process were improved to be 2.46 and 3.8 times those of the as-cast specimen,respectively.Distribution of the microhardness after the second cycle was uniform and its average value was increased by 116%.The potentials derived from the polarization curves were high and the currents were much low for the processed samples.Also,the diameter of the capacitive arcs derived from the Nyquist curves was large in the HCEC processed samples.The finite element analysis indicated the independency of HCEC load from the length in comparison to the conventional CEC.HCEC is a unique SPD method,which can produce long ultrafine-grained rods with a combination of superior mechanical and corrosion properties.