On the basis of the two geological factors rock structure and ground stress environment,a visco elastic plastic model is established to analyze the rock stability of dam foundation and dam abutment during excavation...On the basis of the two geological factors rock structure and ground stress environment,a visco elastic plastic model is established to analyze the rock stability of dam foundation and dam abutment during excavation by a kind of FE condensed method.Rock mechanics is applied in analysing the dynamic process of displacements,stresses,yielding destruction of construction base level,soft interface of dam foundation.Results of the FE analysis indicate that theories and methods in this paper are reasonable and reliable.展开更多
Based on the theoretical framework for crack growth analysis provided by Gao and Hwang, the 5-sector soiution of near-tip fields of mode-I cracks growing quasi-statically and steadily in compressible elastic perfectly...Based on the theoretical framework for crack growth analysis provided by Gao and Hwang, the 5-sector soiution of near-tip fields of mode-I cracks growing quasi-statically and steadily in compressible elastic perfectly plastic materials is obtained.As Poisson's ratio v tends to 1/2,the 5-sector solution degener- ates to the 4-sector solution of near-tip fields of crack growth in incompressible elastic perfectly plastic materials.展开更多
The stress and deformation fields near the tip of an anti-plane crack growing quasi-statically along an interface of elastic perfectly plastic materials are given in this paper. A family of solutions for the growing c...The stress and deformation fields near the tip of an anti-plane crack growing quasi-statically along an interface of elastic perfectly plastic materials are given in this paper. A family of solutions for the growing crack fields is found covering all admissible crack line shear stress ratios.展开更多
The stress and deformation fields near the tip of a mode-I dynamic crack steadily propagating in an elastic-perfectly plastic compressible material are considered under plane strain conditions. Within the framework of...The stress and deformation fields near the tip of a mode-I dynamic crack steadily propagating in an elastic-perfectly plastic compressible material are considered under plane strain conditions. Within the framework of infinitesimal displacement gradient theory, the material is characterized by the Von Mises yield criterion and the associated J(2) flow theory of plasticity. Through rigorous mathematical analysis, this paper eliminates the possibilities of elastic unloading and continuous asymptotic fields with singular deformation, and then constructs a fully continuous and bounded asymptotic stress and strain field. It is found that in this solution there exists a parameter phi(0) which cannot be determined by asymptotic analysis but may characterize the effect of the far field. Lastly the variations of continuous stresses, velocities and strains around the crack tip are given numerically for different values of phi(0).展开更多
For a homogeneous,continuous,and isotropic material whose constitutive relationships meets with the Ramberg-Osgood law(R-O law),the energy in the elastoplastic indentation with a ball indenter was theoretically analyz...For a homogeneous,continuous,and isotropic material whose constitutive relationships meets with the Ramberg-Osgood law(R-O law),the energy in the elastoplastic indentation with a ball indenter was theoretically analyzed,and the proportional superposition of energy in pure elasticity and pure plasticity during indentation was considered based on the equivalence of energy density.Subsequently,a Proportional Superposition-based Elasto Plastic Model(PS-EPM)was developed to describe the relationships between the displacement and the load during the ball indentation.Furthermore,a new test method of Ball Indentation based on Elastoplastic Proportional Superposition(BI-EPS)was developed to obtain the constitutive relationships of R-O law materials.The load–displacement curves predicted using the PS-EPM model were found to agree closely with the Finite Element Analysis(FEA)results.Moreover,the stress vs.strain curves predicted using the BI-EPS method were in better agreement with those obtained by FEA.Additionally,ball indentation was performed on eleven types of metal materials including five types of aluminum alloys and six types of steel.The test results showed that the stress vs.strain relationships and the tensile strength values predicted using the proposed BI-EPS method agreed well with the results obtained using conventional uniaxial tensile tests.展开更多
At the middle pylon of a three-pylon two-span suspension bridge, the effect of unbalanced loads on the adjacent spans may result in a series of technical bottlenecks in design, such as stability and anti-slippage betw...At the middle pylon of a three-pylon two-span suspension bridge, the effect of unbalanced loads on the adjacent spans may result in a series of technical bottlenecks in design, such as stability and anti-slippage between saddles and main cables. This article presents the researches conducted on structure selection and behavior characteristics of middle pylon, interaction mechanism between main cables and saddles and their anti-slippage safety performance, elastic and plastic stability analysis and safety assessment of steel middle pylon, and fatigue design load and method for steel pylon of Taizhou Bridge. According to the research results, a longitudinal inverted Y shape steel middle pylon is used in design, effectively solving many technical difficulties, and this type of pylon has become a suitable middle pylon structural form for many three-ovlon two-soan susoension bridges.展开更多
The performance of a helical soil nailed structure is dependent on the installation torque required and the consequent pullout resistance developed.The present research work aims at proposing theoretical models to est...The performance of a helical soil nailed structure is dependent on the installation torque required and the consequent pullout resistance developed.The present research work aims at proposing theoretical models to estimate the required torque during installation of helical soil nails.Moreover,theoretical models are also developed to predict the pullout capacity of single and group of the helical nail for uniform and staggered arrangements.The proposed model predicts the pure-elastic and elastic-plastic pullout behavior of different helical nails.An equation for estimating the capacity-totorque Ratio(Kt)has also been developed for different nail shaft diameters.The results from the proposed models are validated with experimental results obtained from model testing of both single and group of helical nails.The predicted results are also compared for validation with the published literature.The results for installation torque and pullout load depict that the developed models predict values which are in accordance with the experimental results and are also found in good agreement with the published literature.Thus,the proposed models can effectively be used by the filed engineers for estimating the required installation torque and corresponding pullout capacities for single or double plate helical soil nails in cohesionless soil under surcharge pressure range of 0–50k Pa.展开更多
A semi analytical method was proposed to solve the mechanics problem of stamping a sheet on elastic die. The sheet was divided into four parts according to its deformation and contact with the punch and elastic die. ...A semi analytical method was proposed to solve the mechanics problem of stamping a sheet on elastic die. The sheet was divided into four parts according to its deformation and contact with the punch and elastic die. Analytical solutions were derived individually for each part by using elastic large deflection and plastic large deformation. Solutions were found out with MATLAB by developing a numerical algorithm. Interface forces were obtained by iteration under the compatibility conditions between the neighboring parts of the sheet. Computation shows the method is efficient.展开更多
Porous pre-sintered zirconia is subject to white machining during which its elasticity, plasticity and resistance to machining-induced damage determine its machinability and final quality. This study used nanoindentat...Porous pre-sintered zirconia is subject to white machining during which its elasticity, plasticity and resistance to machining-induced damage determine its machinability and final quality. This study used nanoindentation techniques and the Sakai's series elastic and plastic deformation model to extract the resistance to plastic deformation from the plane strain modulus and the contact hardness for presintered zirconia. The modulus and the resistance to plasticity were used to calculate the relative amount of elasticity and plasticity. The fracture energy and the normalized indentation absorbed energy were used to deconvolute the resistance to machining-induced cracking based on the Sakai-Nowak model. All properties were extracted at a 10 mN peak load and loading rates of 0.1-2 mN/s to determine the loading rate effects on these properties. We found that the resistance to plasticity and the resistance to machining-induced cracking were independent of the loading rate (ANOVA, p 〉 0.05). The elastic and plastic displacements depended on the loading rate through power laws. This loading rate-dependent deformation behaviour was explained by the maximum shear stress generated underneath the indenter and the indentation energy. The plastic deformation components and the indentation absorbed energy at all loading rates were higher than the elastic deformation components and the elastic strain energy, respectively. Finally, we established the linkage among the pore structure, indentation behaviour and machinability of pre-sintered zirconia.展开更多
The static friction behavior of an elastic–plastic spherical adhesive microcontact between a rigid flat and a deformable sphere under combined normal and tangential loading is studied by the finite element method(FEM...The static friction behavior of an elastic–plastic spherical adhesive microcontact between a rigid flat and a deformable sphere under combined normal and tangential loading is studied by the finite element method(FEM).The contact between the sphere and the rigid flat is assumed to be full-stick,and the sliding inception is related to a loss of tangential stiffness.The intermolecular force between the rigid flat and the sphere is assessed by the Lennard–Jones(LJ)potential,which is applied to the sphere and the rigid flat by a user subroutine.The evolution of the adhesive force with tangential displacement in the full-stick condition is revealed.The results indicate that the increasing effect of adhesive energy on the static friction coefficient gradually diminishes with an increase in the adhesive energy and the external normal load.Finally,based on an extensive parametric study,an empirical dimensionless expression is obtained to predict the static friction coefficient of the spherical adhesive microcontact considering the intermolecular force.展开更多
An analytical model is developed to assess the elastic-plastic dynamic response of fully backed sandwich plates under localized impulse load.The core is modeled as an elastic-perfectly plastic foundation.The top face ...An analytical model is developed to assess the elastic-plastic dynamic response of fully backed sandwich plates under localized impulse load.The core is modeled as an elastic-perfectly plastic foundation.The top face sheet is treated as an individual plate resting on the foundation.The elastic-plastic analysis for the top face sheet is based on a minimum principle in dynamic plasticity associated with the finite difference technique.The effects of spatial and temporal distributions of the impulsive loading on the dynamic response of sandwich plates are discussed.The model can be used to predict the impulse-induced local effect on fully backed sandwich plates.展开更多
Finite element analysis is used to investigate an elastic-plastic coated spherical contact in full stick contact condition under combined normal and tangential loading. Sliding inception is associated with a loss of t...Finite element analysis is used to investigate an elastic-plastic coated spherical contact in full stick contact condition under combined normal and tangential loading. Sliding inception is associated with a loss of tangential stiffness. The effect of coating thickness on the static friction coefficient is intensively investigated for the case of hard coatings. For this case, with the increase in coating thickness, the static friction coefficient first increases to its maximum value at a certain coating thickness, thereafter decreases, and eventually levels off. The effect of the normal load and material properties on this behavior is discussed. Finally, a model for the static friction coefficient as a function of the coating thickness is provided for a wide range of material properties and normal loading.展开更多
There are relatively few studies on large rotation or deformation by means of the three-dimensional(3D)numerical manifold method(NMM).A new modified symmetric and antisymmetric decomposition(MSAD)theory is developed a...There are relatively few studies on large rotation or deformation by means of the three-dimensional(3D)numerical manifold method(NMM).A new modified symmetric and antisymmetric decomposition(MSAD)theory is developed and implemented into the 3D NMM,eliminating the false-volume expansion and false-rotation strain/stress problems.The Jaumann rate is used to measure the material rotation,and the geometric stiffness built on the Jaumann rate is deduced.The incremental formulas of the MSAD-based 3D NMM and a practical guide on the implementation of the MSAD theory are given in detail and exemplified.The new theory and formulas can be applied to analyze both large rotation and large deformation problems.Based on the hypoelasto-plasticity theory and the unified strength theory,the unified yield criterion with associated flow rule is implemented into the MSAD-based 3D NMM.Several typical examples are studied,showing the advantage and potential of the new MSAD theory and the MSAD-based 3D NMM.展开更多
This article discusses the characterization of fracture process zone at the tip of a blunt crack in elastoplastic materials under mixed mode loading. The analysis includes the description of elastoplastic zone geometr...This article discusses the characterization of fracture process zone at the tip of a blunt crack in elastoplastic materials under mixed mode loading. The analysis includes the description of elastoplastic zone geometry around the blunt crack tip for predicting crack growth direction. The deformed zone appearing at the crack front is described by presenting a criterion based on the subloading surface concept falling within the framework of unconventional plasticity. The mixed mode crack propagates along the minimum value of the elastoplastic region. The present solutions are reduced to those previously reported in literature, when the elastic perfectly plastic material is considered.展开更多
In this work,a genuinely two-dimensional HLL-type approximate Riemann solver is proposed for hypo-elastic plastic flow.To consider the effects of wave interaction from both the x-and y-directions,a corresponding 2D el...In this work,a genuinely two-dimensional HLL-type approximate Riemann solver is proposed for hypo-elastic plastic flow.To consider the effects of wave interaction from both the x-and y-directions,a corresponding 2D elastic-plastic approximate solver is constructed with elastic-plastic transition embedded.The resultant numerical flux combines one-dimensional numerical flux in the central region of the cell edge and two-dimensional flux in the cell vertex region.The stress is updated separately by using the velocity obtained with the above approximate Riemann solver.Several numerical tests,including genuinely two-dimensional examples,are presented to test the performances of the proposed method.The numerical results demonstrate the credibility of the present 2D approximate Riemann solver.展开更多
This paper is a summarized account of the Chinese professional stantard—JB4732 Steel Pressure Vessels—Design by Analysis. As compared with similar standards in other countries, there are some features in elastic p...This paper is a summarized account of the Chinese professional stantard—JB4732 Steel Pressure Vessels—Design by Analysis. As compared with similar standards in other countries, there are some features in elastic plastic analysis of pressure vessels and their components in JB4732. Three of them are introduced in brief. It includes: flat head design method considering plastic carrying capactities of structures; a reinforcement design method based on limit analysis of spherical shells with nozzles and the calculation method of stress concentration factors of two intersecting cylindrical shells with d/D≤0 7 based on an analytical solution.展开更多
文摘On the basis of the two geological factors rock structure and ground stress environment,a visco elastic plastic model is established to analyze the rock stability of dam foundation and dam abutment during excavation by a kind of FE condensed method.Rock mechanics is applied in analysing the dynamic process of displacements,stresses,yielding destruction of construction base level,soft interface of dam foundation.Results of the FE analysis indicate that theories and methods in this paper are reasonable and reliable.
基金The project supported by the National Natural Science Foundation of China.
文摘Based on the theoretical framework for crack growth analysis provided by Gao and Hwang, the 5-sector soiution of near-tip fields of mode-I cracks growing quasi-statically and steadily in compressible elastic perfectly plastic materials is obtained.As Poisson's ratio v tends to 1/2,the 5-sector solution degener- ates to the 4-sector solution of near-tip fields of crack growth in incompressible elastic perfectly plastic materials.
基金The project supported by the National Natural Science Foundation of China
文摘The stress and deformation fields near the tip of an anti-plane crack growing quasi-statically along an interface of elastic perfectly plastic materials are given in this paper. A family of solutions for the growing crack fields is found covering all admissible crack line shear stress ratios.
基金The present work is supported by the National Natural Science Foundation of China
文摘The stress and deformation fields near the tip of a mode-I dynamic crack steadily propagating in an elastic-perfectly plastic compressible material are considered under plane strain conditions. Within the framework of infinitesimal displacement gradient theory, the material is characterized by the Von Mises yield criterion and the associated J(2) flow theory of plasticity. Through rigorous mathematical analysis, this paper eliminates the possibilities of elastic unloading and continuous asymptotic fields with singular deformation, and then constructs a fully continuous and bounded asymptotic stress and strain field. It is found that in this solution there exists a parameter phi(0) which cannot be determined by asymptotic analysis but may characterize the effect of the far field. Lastly the variations of continuous stresses, velocities and strains around the crack tip are given numerically for different values of phi(0).
基金co-supported by the National Natural Science Foundation of China(Nos.11872320 and 12072294)。
文摘For a homogeneous,continuous,and isotropic material whose constitutive relationships meets with the Ramberg-Osgood law(R-O law),the energy in the elastoplastic indentation with a ball indenter was theoretically analyzed,and the proportional superposition of energy in pure elasticity and pure plasticity during indentation was considered based on the equivalence of energy density.Subsequently,a Proportional Superposition-based Elasto Plastic Model(PS-EPM)was developed to describe the relationships between the displacement and the load during the ball indentation.Furthermore,a new test method of Ball Indentation based on Elastoplastic Proportional Superposition(BI-EPS)was developed to obtain the constitutive relationships of R-O law materials.The load–displacement curves predicted using the PS-EPM model were found to agree closely with the Finite Element Analysis(FEA)results.Moreover,the stress vs.strain curves predicted using the BI-EPS method were in better agreement with those obtained by FEA.Additionally,ball indentation was performed on eleven types of metal materials including five types of aluminum alloys and six types of steel.The test results showed that the stress vs.strain relationships and the tensile strength values predicted using the proposed BI-EPS method agreed well with the results obtained using conventional uniaxial tensile tests.
基金National Science and Technology Support Programs of China(No.2009BAG15B02)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-180)"333 High-level Personnel Training Project"Special Funded Projects in Jiangsu Province
文摘At the middle pylon of a three-pylon two-span suspension bridge, the effect of unbalanced loads on the adjacent spans may result in a series of technical bottlenecks in design, such as stability and anti-slippage between saddles and main cables. This article presents the researches conducted on structure selection and behavior characteristics of middle pylon, interaction mechanism between main cables and saddles and their anti-slippage safety performance, elastic and plastic stability analysis and safety assessment of steel middle pylon, and fatigue design load and method for steel pylon of Taizhou Bridge. According to the research results, a longitudinal inverted Y shape steel middle pylon is used in design, effectively solving many technical difficulties, and this type of pylon has become a suitable middle pylon structural form for many three-ovlon two-soan susoension bridges.
文摘The performance of a helical soil nailed structure is dependent on the installation torque required and the consequent pullout resistance developed.The present research work aims at proposing theoretical models to estimate the required torque during installation of helical soil nails.Moreover,theoretical models are also developed to predict the pullout capacity of single and group of the helical nail for uniform and staggered arrangements.The proposed model predicts the pure-elastic and elastic-plastic pullout behavior of different helical nails.An equation for estimating the capacity-totorque Ratio(Kt)has also been developed for different nail shaft diameters.The results from the proposed models are validated with experimental results obtained from model testing of both single and group of helical nails.The predicted results are also compared for validation with the published literature.The results for installation torque and pullout load depict that the developed models predict values which are in accordance with the experimental results and are also found in good agreement with the published literature.Thus,the proposed models can effectively be used by the filed engineers for estimating the required installation torque and corresponding pullout capacities for single or double plate helical soil nails in cohesionless soil under surcharge pressure range of 0–50k Pa.
文摘A semi analytical method was proposed to solve the mechanics problem of stamping a sheet on elastic die. The sheet was divided into four parts according to its deformation and contact with the punch and elastic die. Analytical solutions were derived individually for each part by using elastic large deflection and plastic large deformation. Solutions were found out with MATLAB by developing a numerical algorithm. Interface forces were obtained by iteration under the compatibility conditions between the neighboring parts of the sheet. Computation shows the method is efficient.
基金supported by the JCU Collaboration Grants Scheme awarded to L.Yin
文摘Porous pre-sintered zirconia is subject to white machining during which its elasticity, plasticity and resistance to machining-induced damage determine its machinability and final quality. This study used nanoindentation techniques and the Sakai's series elastic and plastic deformation model to extract the resistance to plastic deformation from the plane strain modulus and the contact hardness for presintered zirconia. The modulus and the resistance to plasticity were used to calculate the relative amount of elasticity and plasticity. The fracture energy and the normalized indentation absorbed energy were used to deconvolute the resistance to machining-induced cracking based on the Sakai-Nowak model. All properties were extracted at a 10 mN peak load and loading rates of 0.1-2 mN/s to determine the loading rate effects on these properties. We found that the resistance to plasticity and the resistance to machining-induced cracking were independent of the loading rate (ANOVA, p 〉 0.05). The elastic and plastic displacements depended on the loading rate through power laws. This loading rate-dependent deformation behaviour was explained by the maximum shear stress generated underneath the indenter and the indentation energy. The plastic deformation components and the indentation absorbed energy at all loading rates were higher than the elastic deformation components and the elastic strain energy, respectively. Finally, we established the linkage among the pore structure, indentation behaviour and machinability of pre-sintered zirconia.
基金supported by the Israel Academy of Sciences and Humanities and the Council for Higher Education Excellence Fellowship Program for International Postdoctoral Researcher,the National Natural Science Foundation of China(52105052)the China Scholarship Council(202308500207).
文摘The static friction behavior of an elastic–plastic spherical adhesive microcontact between a rigid flat and a deformable sphere under combined normal and tangential loading is studied by the finite element method(FEM).The contact between the sphere and the rigid flat is assumed to be full-stick,and the sliding inception is related to a loss of tangential stiffness.The intermolecular force between the rigid flat and the sphere is assessed by the Lennard–Jones(LJ)potential,which is applied to the sphere and the rigid flat by a user subroutine.The evolution of the adhesive force with tangential displacement in the full-stick condition is revealed.The results indicate that the increasing effect of adhesive energy on the static friction coefficient gradually diminishes with an increase in the adhesive energy and the external normal load.Finally,based on an extensive parametric study,an empirical dimensionless expression is obtained to predict the static friction coefficient of the spherical adhesive microcontact considering the intermolecular force.
基金supported by the National Natural Science Foundation of China (No.10602005)
文摘An analytical model is developed to assess the elastic-plastic dynamic response of fully backed sandwich plates under localized impulse load.The core is modeled as an elastic-perfectly plastic foundation.The top face sheet is treated as an individual plate resting on the foundation.The elastic-plastic analysis for the top face sheet is based on a minimum principle in dynamic plasticity associated with the finite difference technique.The effects of spatial and temporal distributions of the impulsive loading on the dynamic response of sandwich plates are discussed.The model can be used to predict the impulse-induced local effect on fully backed sandwich plates.
文摘Finite element analysis is used to investigate an elastic-plastic coated spherical contact in full stick contact condition under combined normal and tangential loading. Sliding inception is associated with a loss of tangential stiffness. The effect of coating thickness on the static friction coefficient is intensively investigated for the case of hard coatings. For this case, with the increase in coating thickness, the static friction coefficient first increases to its maximum value at a certain coating thickness, thereafter decreases, and eventually levels off. The effect of the normal load and material properties on this behavior is discussed. Finally, a model for the static friction coefficient as a function of the coating thickness is provided for a wide range of material properties and normal loading.
基金This research is supported by the National Basic Research Program of China(973 Program,Grant No.2014CB047100)the National Natural Science Foundation of China(Grant Nos.41472289,51179185 and 41807275).
文摘There are relatively few studies on large rotation or deformation by means of the three-dimensional(3D)numerical manifold method(NMM).A new modified symmetric and antisymmetric decomposition(MSAD)theory is developed and implemented into the 3D NMM,eliminating the false-volume expansion and false-rotation strain/stress problems.The Jaumann rate is used to measure the material rotation,and the geometric stiffness built on the Jaumann rate is deduced.The incremental formulas of the MSAD-based 3D NMM and a practical guide on the implementation of the MSAD theory are given in detail and exemplified.The new theory and formulas can be applied to analyze both large rotation and large deformation problems.Based on the hypoelasto-plasticity theory and the unified strength theory,the unified yield criterion with associated flow rule is implemented into the MSAD-based 3D NMM.Several typical examples are studied,showing the advantage and potential of the new MSAD theory and the MSAD-based 3D NMM.
文摘This article discusses the characterization of fracture process zone at the tip of a blunt crack in elastoplastic materials under mixed mode loading. The analysis includes the description of elastoplastic zone geometry around the blunt crack tip for predicting crack growth direction. The deformed zone appearing at the crack front is described by presenting a criterion based on the subloading surface concept falling within the framework of unconventional plasticity. The mixed mode crack propagates along the minimum value of the elastoplastic region. The present solutions are reduced to those previously reported in literature, when the elastic perfectly plastic material is considered.
基金supported by the NSFC-NSAF joint fund(Grant No.U1730118)the Science Challenge Project(Grant No.JCKY2016212A502)+1 种基金the National Natural Science Foundation of China(Grant No.12101029)Postdoctoral Science Foundation of China(Grant No.2020M680283).
文摘In this work,a genuinely two-dimensional HLL-type approximate Riemann solver is proposed for hypo-elastic plastic flow.To consider the effects of wave interaction from both the x-and y-directions,a corresponding 2D elastic-plastic approximate solver is constructed with elastic-plastic transition embedded.The resultant numerical flux combines one-dimensional numerical flux in the central region of the cell edge and two-dimensional flux in the cell vertex region.The stress is updated separately by using the velocity obtained with the above approximate Riemann solver.Several numerical tests,including genuinely two-dimensional examples,are presented to test the performances of the proposed method.The numerical results demonstrate the credibility of the present 2D approximate Riemann solver.
文摘This paper is a summarized account of the Chinese professional stantard—JB4732 Steel Pressure Vessels—Design by Analysis. As compared with similar standards in other countries, there are some features in elastic plastic analysis of pressure vessels and their components in JB4732. Three of them are introduced in brief. It includes: flat head design method considering plastic carrying capactities of structures; a reinforcement design method based on limit analysis of spherical shells with nozzles and the calculation method of stress concentration factors of two intersecting cylindrical shells with d/D≤0 7 based on an analytical solution.