Glass positioning and holding is difficult in the process of injection molding encapsulation of automobile glass. A suction cup or soft resin is always introduced in this process. However,these materials cannot hold g...Glass positioning and holding is difficult in the process of injection molding encapsulation of automobile glass. A suction cup or soft resin is always introduced in this process. However,these materials cannot hold glass tightly,thus resulting in the unsteady quality of toughened glass and encapsulated plastic. To solve this problem,a novel holding method called magnetic high-pressure holding with twin bags is proposed to address the features of toughened glass and the encapsulation injection process. Firstly,a pair of permanent magnets is introduced as energy source,followed by the magnetization of a couple of magnetic particle bags. Contact between the single bag and the glass surface will enable the couple of magnetic particle bags to hold glass tightly and to self-adapt the freeform of the glass. Secondly, an experimental system with mechanical and control systems is designed. This system is controlled by the opening and closing force of the mold,which turns the magnetic field on or off to hold or loosen the glass. The magnetic field distributions are measured at important positions of the permanent magnets and in the magnetized particles in the experiments to determine the holding performance. Finally, the process of determining the parameters of the magnet and its attenuation is analyzed, including the minimum friction force between the glass and the particle bag during injection molding,the magnetic energy product and the magnetized filed distributions,and the re-checking method for these parameters. The theoretical analysis and the experimental result show that this flexible holding system may produce sufficient holding force,which not only protects glass but self-adapts the glass freeform as well. The production practice meets the technical requirements of injection molding with a defect-free surface,with no scratches and cracks on the glass and no slight glass movements in the mold cavity.展开更多
基金National Natural Science Foundation of China(No.51303027)Program for New Century Excellent Talents in Fujian Province University,China(No.NCETFJ-2010)+1 种基金Research Fund for Fujian Provincial University,China(No.JK2010038)Research Fund of Fujian Education Department,China(No.JA11189)
文摘Glass positioning and holding is difficult in the process of injection molding encapsulation of automobile glass. A suction cup or soft resin is always introduced in this process. However,these materials cannot hold glass tightly,thus resulting in the unsteady quality of toughened glass and encapsulated plastic. To solve this problem,a novel holding method called magnetic high-pressure holding with twin bags is proposed to address the features of toughened glass and the encapsulation injection process. Firstly,a pair of permanent magnets is introduced as energy source,followed by the magnetization of a couple of magnetic particle bags. Contact between the single bag and the glass surface will enable the couple of magnetic particle bags to hold glass tightly and to self-adapt the freeform of the glass. Secondly, an experimental system with mechanical and control systems is designed. This system is controlled by the opening and closing force of the mold,which turns the magnetic field on or off to hold or loosen the glass. The magnetic field distributions are measured at important positions of the permanent magnets and in the magnetized particles in the experiments to determine the holding performance. Finally, the process of determining the parameters of the magnet and its attenuation is analyzed, including the minimum friction force between the glass and the particle bag during injection molding,the magnetic energy product and the magnetized filed distributions,and the re-checking method for these parameters. The theoretical analysis and the experimental result show that this flexible holding system may produce sufficient holding force,which not only protects glass but self-adapts the glass freeform as well. The production practice meets the technical requirements of injection molding with a defect-free surface,with no scratches and cracks on the glass and no slight glass movements in the mold cavity.