In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based...In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.展开更多
Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane fo...Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane forces are important.The final deflection of a simply -supported circular rigid-plastic plate loaded by a uniformly distributed impulse is obtained.In comparison with other approximate solutions, the present results are found to be simpler and in better agreement with the corresponding experimental values reoorded by Florence.展开更多
The paper proposes a new approach of predicting the bifurcation points of elastic-plastic buckling of plates and shells,which is obtained from the natural combination of the Lyaponov's dy- namic criterion on stabi...The paper proposes a new approach of predicting the bifurcation points of elastic-plastic buckling of plates and shells,which is obtained from the natural combination of the Lyaponov's dy- namic criterion on stability and the modified adaptive Dynamic Relaxation(maDR)method developed recently by the authors.This new method can overcome the difficulties in the applications of the dy- namic criterion.Numerical results show that the theoretically predicted bifurcation points are in very good agreement with the corresponding experimental ones.The paper also provides a new means for further research on the plastic buckling paradox of plates and shells.展开更多
An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented. Based on the expression of magnetic force f...An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented. Based on the expression of magnetic force from the variational principle of ferromagnetic plates, the buckling and bending theory of thin plates, the Mises yield criterion and the increment theory for plastic deformation, we establish a numerical code to quantitatively simulate the behaviors of the nonlinearly multi-fields coupling problems by the finite element method. Along with the phenomena of buckling/snapping and bending, or the characteristic curve of deflection versus magnitude of applied magnetic fields being numerically displayed, the critical loads of buckling/snapping, and the influences of plastic deformation and the width of plate on these critical loads, the plastic regions expanding with the magnitude of applied magnetic field, as well as the evolvement of deflection configuration of the plate are numerically obtained in a case study.展开更多
A new elastic-plastic impact-contact model is proposed in this paper. By adopting the principle of minimum acceleration for elastic-plastic continue at finite deformation, and with the aid of finite difference method,...A new elastic-plastic impact-contact model is proposed in this paper. By adopting the principle of minimum acceleration for elastic-plastic continue at finite deformation, and with the aid of finite difference method, the proposed model is applied in the problem of dynamic response of a clamped thin circular plate subjected to a projectile impact centrally. The impact force history and response characteristics of the target plate is studied in detail. The theoretical predictions of the impact force and plate deflection are in good agreements with those of LDA experimental data. Linear expressions of the maximum impact force/transverse deflection versus impact velocity are given on the basis of the theoretical results.展开更多
This paper concerns the dynamic plastic response of a circular plate resting on fluid subjected to a uniformly distributed rectangular load pulse with finite deformation. It is assumed that the fluid is incompressible...This paper concerns the dynamic plastic response of a circular plate resting on fluid subjected to a uniformly distributed rectangular load pulse with finite deformation. It is assumed that the fluid is incompressible and inviscous, and the plate is made of rigid-plastic material and simply supported along its edge. By using the method of the Hankel integral transformation, the nonuniform fluid resistance is derived as the plate and the fluid is coupled. Finally, an analytic solution for a circular plate under a medium load is obtained according to the equations of motion of the plate with finite deformation.展开更多
A study is presented for the large deflection dynamic response of rigid- plastic circular plate resting on potential fluid under a rectangular pressure pulse load. By virtue of Hankel integral transform technique,this...A study is presented for the large deflection dynamic response of rigid- plastic circular plate resting on potential fluid under a rectangular pressure pulse load. By virtue of Hankel integral transform technique,this interaction problem is reduced to a problem of dynamic plastic response of the plate in vacuum.The closed-form solutions are derived for both middle and high pressure loads by solving the equations of motion with the large deflection in the range where both bending moments and membrane forces are important.Some numerical results are given.展开更多
A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- ida...A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- idation theory is employed to simulate the cyclic loading induced elasto-plastic deformation of the soil skeleton and the accompanying generation/dissipation of the excess pore water pressure. The suction force generated around the anchor due to the cyclic variation of the pore water pressure has much effect on the pullout capacity of the plate anchor. The calculated pullout capacity with the proposed method (i.e., the coupled analysis) gets lower than that with the conventional total stress analysis for the case of long-term sustained loading, but slightly higher for the case of short-term monotonic loading. The cyclic loading induced accumulation of pore water pressure may result in an obvious decrease of the stiffness of the soil-Plate anchor svstem.展开更多
In this paper, the magnetic-elastic-plastic deformation behavior is studied for a ferromagnetic plate with simple supports. The perturbation formula of magnetic force is first derived based on the perturbation techniq...In this paper, the magnetic-elastic-plastic deformation behavior is studied for a ferromagnetic plate with simple supports. The perturbation formula of magnetic force is first derived based on the perturbation technique, and is then applied to the analysis of deformation characteristics with emphasis laid on the analyses of modes, symmetry of deformation and influences of incident angle of applied magnetic field on the plate deformation. The theoretical analyses offer explanations why the configuration offer- romagnetic rectangular plate with simple supports under an oblique magnetic field is in-wavy type along the x-direction, and why the largest deformation of the ferromagnetic plate occurs at the incident angle of 45°for the magnetic field. A numerical code based on the finite element method is developed to simulate quantitatively behaviors of the nonlinearly coupled multi-field problem. Some characteristic curves are plotted to illustrate the magneto--elastic-plastic deflections, and to reveal how the deflections can be influenced by the incident angle of applied magnetic field. The deformation characteristics obtained from the numerical simulations are found in good agreement with the theoretical analyses.展开更多
The magneto-plastic instability of a ferromagnetic beam-type plate with simple supports and small initial imperfection is analytically investigated in this paper for that the plastic deformation of the plate with a ...The magneto-plastic instability of a ferromagnetic beam-type plate with simple supports and small initial imperfection is analytically investigated in this paper for that the plastic deformation of the plate with a linear-strain hardening relation is considered when the plate is located in a strong uniformly distributed magnetic ?eld. After the distribution of magnetic ?elds related to the de?ected con?guration of plate is imaginably divided into two parts, i.e., one is related to the ?at plate and the other dependent on the perturbation of magnetic ?elds for which the plate con?guration changes from the ?at into the deformed state, the perturbation technique is employed to analyze the distribution of the perturbation magnetic ?elds in and out-of the magnetic medium of the ferromagnetic structure in a transverse magnetic ?eld, which leads to some analytical formulae/solutions for the magnetic ?elds and the resulting magnetic force exerted on the plate. Based on them, the magneto-plastic buckling and snapping of the plate in a transverse magnetic ?eld is discussed, and the critical magnetic ?eld is analytically formulated in terms of the parameters of geometry and material of the plate employed by solving the governing equation of the magneto-plastic plate in the applied magnetic ?eld. Further, the sensitivity of the initial imperfection on the magneto-plastic instability, expressed by an ampli?cation function, is obtained by solving the dynamic equation of de?ection of the plate after the inertial force in the transverse direction is taken into account. The results obtained show that the critical magnetic ?eld is sensitive to the plastic characteristic, e.g., hardening coe?cient, and the instability mode and de?ection of the plate are dependent on the geometrical imperfection as well.展开更多
The large deflection dynamic plastic response of fully clamped square plates with stiffeners under blast load is analyzed in detail in this paper. Various relevant motion patterns and criterions are presented. The for...The large deflection dynamic plastic response of fully clamped square plates with stiffeners under blast load is analyzed in detail in this paper. Various relevant motion patterns and criterions are presented. The formulas of maximum permanent deformation of the plates with stiffeners are derived. The results of calculation are compared with those of experiment in [3], with good agreement shown in most cases.展开更多
Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionles...Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionless form is isomorphic with the Mises criterion for isotropic materials. Furthermore, the incremental elasto-plastic damage constitutive equations and damage evolution equations are established. Based on the classical nonlinear plate theory, the incremental nonlinear equilibrium equations of orthotropic thin plates considering damage effect are obtained, and solved with the finite difference and iteration methods. In the numerical examples, the effects of damage evolution and initial deflection on the elasto-plastic postbuckling of orthotropic plates are discussed in detail.展开更多
A theoretical analysis is presented for the dynamic plastic behavior of a simply supported rigid, perfectly plastic circular plate in damping medium with finite-deflections subjected to a rectangular pressure pulse. A...A theoretical analysis is presented for the dynamic plastic behavior of a simply supported rigid, perfectly plastic circular plate in damping medium with finite-deflections subjected to a rectangular pressure pulse. Analytical solutions of every moving stage under both medium and high loads are developed.展开更多
In this paper, the improved near crack line analysis method proposed in Refs. [1] and [2] is used to investigate a center crack loaded by two pairs of antiplane point forces in a finite plate in an elastic-perfectly p...In this paper, the improved near crack line analysis method proposed in Refs. [1] and [2] is used to investigate a center crack loaded by two pairs of antiplane point forces in a finite plate in an elastic-perfectly plastic solid. And the analytical solutions are obtained, that is elastic-plastic stress fields near the crack line and the law that the length of the plastic zone along the crack line is varied with an external loads tr,ld the bearing capacity of a finite plate with a center crack. The results of this paper are sufficiently precise near the crack line, because the assumptions of the small scale yielding theory have not been used and no other assumptions have been taken.展开更多
The near crack line analysis method was used to investigate a centric crack loaded by two pairs of point shear forces in a finite plate, and the analytical solution was obtained. The solution includes the unit normal ...The near crack line analysis method was used to investigate a centric crack loaded by two pairs of point shear forces in a finite plate, and the analytical solution was obtained. The solution includes the unit normal vector of the elastic-plastic boundary near the crack line, the elastic-plastic stress fields near the crack line, the variations of the length of the plastic zone along the crack line with an external load, and the bearing capacity of a finite plate with a centric crack loaded by two pairs of point shear forces. The results are sufficiently precise near the crack line because the assumptions of small scale yielding theory have not been made and no other assumptions are taken.展开更多
Leveler is widely used to improve the quality of defective mild steel plates.Its typical ranges of the leveling capacity are constrained by three criteria,namely the maximum stroke of rollers,allowable total leveling ...Leveler is widely used to improve the quality of defective mild steel plates.Its typical ranges of the leveling capacity are constrained by three criteria,namely the maximum stroke of rollers,allowable total leveling force and motor power.In this work,an optimization model with equality and inequality constraints was built for the maximum yield stress search of each thickness of plates.The corresponding search procedure with three loops was given.The approximate range by the simplification model could be used as the initial value for the actual range search of the leveling capacity.Therefore,the search speed could be accelerated compared with a global search.The consistency of the analytical results and field data demonstrates the reliability of the proposed model and procedure.The typical ranges of the leveling capacity are expressed by several boundary curves which are helpful to judge whether the incoming plate can be leveled quickly or not.Also,these curves can be used to find the maximum yield stress for a specific thickness or the maximum thickness for a yield stress for plates.展开更多
This process does not use general electroless plating solution containing formaldehyde(carcinogen) and phosphate(the object of waste water regulation). Furthermore, we succeeded in developing a new electroless copper ...This process does not use general electroless plating solution containing formaldehyde(carcinogen) and phosphate(the object of waste water regulation). Furthermore, we succeeded in developing a new electroless copper plating solution which is usable semi-permanently by using the special reducing agent. The electroless deposition forms a very thin conductive film on substrate. Therefore, it can prevent some appearance defects (e.g. pits, pin-holes, laminations and inclusions) that occur in the conventional ones. In addition, it is possible to eliminate electroplating of copper from the process by applying the exclusive nickel solution in electroplating. Therefore, the obtained metal parts can be recycled as high quality stainless steel. Given this copper electroplating-free process, 25 u m-thick nickel deposition at the stage of electroplating, at least, enables the metal layers to show properties as versatile as those of the conventional(its total thickness is 25 n m in the comparative conventional process).展开更多
Heat and mass transfer analysis of an incompressible, laminar boundary layer over solar flat plate collector evapora- tion systems for tannery effluent (soak liquor) is investigated. The governing equations are solved...Heat and mass transfer analysis of an incompressible, laminar boundary layer over solar flat plate collector evapora- tion systems for tannery effluent (soak liquor) is investigated. The governing equations are solved for various liquid to air velocity ratios. Profiles of velocity, temperature and concentration as well as their gradients are presented. The heat transfer and mass transfer coefficients thus obtained are used to evaluate mass of water evaporated for an inclined fibre-reinforced plastic (FRP) solar flat plate collector (FPC) with and without cover. Comparison of these results with the experimental performance shows encouraging trend of good agreement between them.展开更多
文摘In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.
基金The project supported by a fund from the National Educational Committee.
文摘Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane forces are important.The final deflection of a simply -supported circular rigid-plastic plate loaded by a uniformly distributed impulse is obtained.In comparison with other approximate solutions, the present results are found to be simpler and in better agreement with the corresponding experimental values reoorded by Florence.
文摘The paper proposes a new approach of predicting the bifurcation points of elastic-plastic buckling of plates and shells,which is obtained from the natural combination of the Lyaponov's dy- namic criterion on stability and the modified adaptive Dynamic Relaxation(maDR)method developed recently by the authors.This new method can overcome the difficulties in the applications of the dy- namic criterion.Numerical results show that the theoretically predicted bifurcation points are in very good agreement with the corresponding experimental ones.The paper also provides a new means for further research on the plastic buckling paradox of plates and shells.
基金Project supported by the National Natural Sciences Fund of China(Nos.10302009 and 10672070)the Natural Sciences Fund of Gansu Province(3ZS051-A25-012)the Excellent Doctors' Fund of Lanzhou University
文摘An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented. Based on the expression of magnetic force from the variational principle of ferromagnetic plates, the buckling and bending theory of thin plates, the Mises yield criterion and the increment theory for plastic deformation, we establish a numerical code to quantitatively simulate the behaviors of the nonlinearly multi-fields coupling problems by the finite element method. Along with the phenomena of buckling/snapping and bending, or the characteristic curve of deflection versus magnitude of applied magnetic fields being numerically displayed, the critical loads of buckling/snapping, and the influences of plastic deformation and the width of plate on these critical loads, the plastic regions expanding with the magnitude of applied magnetic field, as well as the evolvement of deflection configuration of the plate are numerically obtained in a case study.
基金The project supported by the National Natural Science Foundation of China(10532020)
文摘A new elastic-plastic impact-contact model is proposed in this paper. By adopting the principle of minimum acceleration for elastic-plastic continue at finite deformation, and with the aid of finite difference method, the proposed model is applied in the problem of dynamic response of a clamped thin circular plate subjected to a projectile impact centrally. The impact force history and response characteristics of the target plate is studied in detail. The theoretical predictions of the impact force and plate deflection are in good agreements with those of LDA experimental data. Linear expressions of the maximum impact force/transverse deflection versus impact velocity are given on the basis of the theoretical results.
文摘This paper concerns the dynamic plastic response of a circular plate resting on fluid subjected to a uniformly distributed rectangular load pulse with finite deformation. It is assumed that the fluid is incompressible and inviscous, and the plate is made of rigid-plastic material and simply supported along its edge. By using the method of the Hankel integral transformation, the nonuniform fluid resistance is derived as the plate and the fluid is coupled. Finally, an analytic solution for a circular plate under a medium load is obtained according to the equations of motion of the plate with finite deformation.
基金The study is supported by National Natural Science Foundation of China.
文摘A study is presented for the large deflection dynamic response of rigid- plastic circular plate resting on potential fluid under a rectangular pressure pulse load. By virtue of Hankel integral transform technique,this interaction problem is reduced to a problem of dynamic plastic response of the plate in vacuum.The closed-form solutions are derived for both middle and high pressure loads by solving the equations of motion with the large deflection in the range where both bending moments and membrane forces are important.Some numerical results are given.
基金supported by the National Natural Science Foundation of China(51309213)the 973 program of China (2014CB046200)
文摘A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- idation theory is employed to simulate the cyclic loading induced elasto-plastic deformation of the soil skeleton and the accompanying generation/dissipation of the excess pore water pressure. The suction force generated around the anchor due to the cyclic variation of the pore water pressure has much effect on the pullout capacity of the plate anchor. The calculated pullout capacity with the proposed method (i.e., the coupled analysis) gets lower than that with the conventional total stress analysis for the case of long-term sustained loading, but slightly higher for the case of short-term monotonic loading. The cyclic loading induced accumulation of pore water pressure may result in an obvious decrease of the stiffness of the soil-Plate anchor svstem.
基金the National Natural Science Foundation of China (10672070, 10302009)the National Basic Research Program of China (2007CB607560)+1 种基金the Program for New Century Talented (NCET-06-0896) the Natural Science Fund of Gansu Province
文摘In this paper, the magnetic-elastic-plastic deformation behavior is studied for a ferromagnetic plate with simple supports. The perturbation formula of magnetic force is first derived based on the perturbation technique, and is then applied to the analysis of deformation characteristics with emphasis laid on the analyses of modes, symmetry of deformation and influences of incident angle of applied magnetic field on the plate deformation. The theoretical analyses offer explanations why the configuration offer- romagnetic rectangular plate with simple supports under an oblique magnetic field is in-wavy type along the x-direction, and why the largest deformation of the ferromagnetic plate occurs at the incident angle of 45°for the magnetic field. A numerical code based on the finite element method is developed to simulate quantitatively behaviors of the nonlinearly coupled multi-field problem. Some characteristic curves are plotted to illustrate the magneto--elastic-plastic deflections, and to reveal how the deflections can be influenced by the incident angle of applied magnetic field. The deformation characteristics obtained from the numerical simulations are found in good agreement with the theoretical analyses.
基金Project supported by the National Key Basic Pre-Research Fund of the Ministry of Science and Technology of Chinathe Fund for Outstanding Young Researchers of the National Natural Sciences Foundation of China (No.10025208)+2 种基金 the KeyFund of the National Natural Science Foundation of China the Youth Fund of the National Natural Science Foundationof China (No.10302009) and the Youth Fund of Lanzhou University (Lzu200305).
文摘The magneto-plastic instability of a ferromagnetic beam-type plate with simple supports and small initial imperfection is analytically investigated in this paper for that the plastic deformation of the plate with a linear-strain hardening relation is considered when the plate is located in a strong uniformly distributed magnetic ?eld. After the distribution of magnetic ?elds related to the de?ected con?guration of plate is imaginably divided into two parts, i.e., one is related to the ?at plate and the other dependent on the perturbation of magnetic ?elds for which the plate con?guration changes from the ?at into the deformed state, the perturbation technique is employed to analyze the distribution of the perturbation magnetic ?elds in and out-of the magnetic medium of the ferromagnetic structure in a transverse magnetic ?eld, which leads to some analytical formulae/solutions for the magnetic ?elds and the resulting magnetic force exerted on the plate. Based on them, the magneto-plastic buckling and snapping of the plate in a transverse magnetic ?eld is discussed, and the critical magnetic ?eld is analytically formulated in terms of the parameters of geometry and material of the plate employed by solving the governing equation of the magneto-plastic plate in the applied magnetic ?eld. Further, the sensitivity of the initial imperfection on the magneto-plastic instability, expressed by an ampli?cation function, is obtained by solving the dynamic equation of de?ection of the plate after the inertial force in the transverse direction is taken into account. The results obtained show that the critical magnetic ?eld is sensitive to the plastic characteristic, e.g., hardening coe?cient, and the instability mode and de?ection of the plate are dependent on the geometrical imperfection as well.
文摘The large deflection dynamic plastic response of fully clamped square plates with stiffeners under blast load is analyzed in detail in this paper. Various relevant motion patterns and criterions are presented. The formulas of maximum permanent deformation of the plates with stiffeners are derived. The results of calculation are compared with those of experiment in [3], with good agreement shown in most cases.
基金Project supported by the National Natural Science Foundation of China (No.10572049)
文摘Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionless form is isomorphic with the Mises criterion for isotropic materials. Furthermore, the incremental elasto-plastic damage constitutive equations and damage evolution equations are established. Based on the classical nonlinear plate theory, the incremental nonlinear equilibrium equations of orthotropic thin plates considering damage effect are obtained, and solved with the finite difference and iteration methods. In the numerical examples, the effects of damage evolution and initial deflection on the elasto-plastic postbuckling of orthotropic plates are discussed in detail.
文摘A theoretical analysis is presented for the dynamic plastic behavior of a simply supported rigid, perfectly plastic circular plate in damping medium with finite-deflections subjected to a rectangular pressure pulse. Analytical solutions of every moving stage under both medium and high loads are developed.
文摘In this paper, the improved near crack line analysis method proposed in Refs. [1] and [2] is used to investigate a center crack loaded by two pairs of antiplane point forces in a finite plate in an elastic-perfectly plastic solid. And the analytical solutions are obtained, that is elastic-plastic stress fields near the crack line and the law that the length of the plastic zone along the crack line is varied with an external loads tr,ld the bearing capacity of a finite plate with a center crack. The results of this paper are sufficiently precise near the crack line, because the assumptions of the small scale yielding theory have not been used and no other assumptions have been taken.
基金Key Project(2004BA901A02) supported by the Ministry of Science and Technology of China
文摘The near crack line analysis method was used to investigate a centric crack loaded by two pairs of point shear forces in a finite plate, and the analytical solution was obtained. The solution includes the unit normal vector of the elastic-plastic boundary near the crack line, the elastic-plastic stress fields near the crack line, the variations of the length of the plastic zone along the crack line with an external load, and the bearing capacity of a finite plate with a centric crack loaded by two pairs of point shear forces. The results are sufficiently precise near the crack line because the assumptions of small scale yielding theory have not been made and no other assumptions are taken.
文摘Leveler is widely used to improve the quality of defective mild steel plates.Its typical ranges of the leveling capacity are constrained by three criteria,namely the maximum stroke of rollers,allowable total leveling force and motor power.In this work,an optimization model with equality and inequality constraints was built for the maximum yield stress search of each thickness of plates.The corresponding search procedure with three loops was given.The approximate range by the simplification model could be used as the initial value for the actual range search of the leveling capacity.Therefore,the search speed could be accelerated compared with a global search.The consistency of the analytical results and field data demonstrates the reliability of the proposed model and procedure.The typical ranges of the leveling capacity are expressed by several boundary curves which are helpful to judge whether the incoming plate can be leveled quickly or not.Also,these curves can be used to find the maximum yield stress for a specific thickness or the maximum thickness for a yield stress for plates.
文摘This process does not use general electroless plating solution containing formaldehyde(carcinogen) and phosphate(the object of waste water regulation). Furthermore, we succeeded in developing a new electroless copper plating solution which is usable semi-permanently by using the special reducing agent. The electroless deposition forms a very thin conductive film on substrate. Therefore, it can prevent some appearance defects (e.g. pits, pin-holes, laminations and inclusions) that occur in the conventional ones. In addition, it is possible to eliminate electroplating of copper from the process by applying the exclusive nickel solution in electroplating. Therefore, the obtained metal parts can be recycled as high quality stainless steel. Given this copper electroplating-free process, 25 u m-thick nickel deposition at the stage of electroplating, at least, enables the metal layers to show properties as versatile as those of the conventional(its total thickness is 25 n m in the comparative conventional process).
文摘Heat and mass transfer analysis of an incompressible, laminar boundary layer over solar flat plate collector evapora- tion systems for tannery effluent (soak liquor) is investigated. The governing equations are solved for various liquid to air velocity ratios. Profiles of velocity, temperature and concentration as well as their gradients are presented. The heat transfer and mass transfer coefficients thus obtained are used to evaluate mass of water evaporated for an inclined fibre-reinforced plastic (FRP) solar flat plate collector (FPC) with and without cover. Comparison of these results with the experimental performance shows encouraging trend of good agreement between them.