期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A Study on Plastic Deformation Resistance of Sn-Pb-RE Solder 被引量:1
1
作者 朱颖 康慧 +2 位作者 曲平 方洪渊 钱乙余 《Journal of Rare Earths》 SCIE EI CAS CSCD 1999年第4期289-292,共4页
The plastic deformation of solder joint depends on the plastic deformation resistance of solder. The studyon plastic deformation resistance of Sn-Pb-RE solder at room temperature shows that with the increase 0f RE con... The plastic deformation of solder joint depends on the plastic deformation resistance of solder. The studyon plastic deformation resistance of Sn-Pb-RE solder at room temperature shows that with the increase 0f RE content, theplastic deformation resistance of Sn-Pb-RE solder enhances. The microstructure investigation reveals'that the addition ofRE makes the microstructure of solder fine and homogeneous, which enhances hwher hardening and multi-sliding hardening. Moreover, RE on grain boundaries hinders the grain boundary sliding. Therefore, the deformation resistance ofsolder enhances. However, since it is very hard, the intermetallic compounds of RE near fracture surface will cause intergranular cracks around it. 展开更多
关键词 Rare earths plastic deformation resistance Sn-Pb-RE solder
下载PDF
Assessment of Elasticity,Plasticity and Resistance to Machining-induced Damage of Porous Pre-sintered Zirconia Using Nanoindentation Techniques
2
作者 Abdur-Rasheed Alao Ling Yin 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第5期402-410,共9页
Porous pre-sintered zirconia is subject to white machining during which its elasticity, plasticity and resistance to machining-induced damage determine its machinability and final quality. This study used nanoindentat... Porous pre-sintered zirconia is subject to white machining during which its elasticity, plasticity and resistance to machining-induced damage determine its machinability and final quality. This study used nanoindentation techniques and the Sakai's series elastic and plastic deformation model to extract the resistance to plastic deformation from the plane strain modulus and the contact hardness for presintered zirconia. The modulus and the resistance to plasticity were used to calculate the relative amount of elasticity and plasticity. The fracture energy and the normalized indentation absorbed energy were used to deconvolute the resistance to machining-induced cracking based on the Sakai-Nowak model. All properties were extracted at a 10 mN peak load and loading rates of 0.1-2 mN/s to determine the loading rate effects on these properties. We found that the resistance to plasticity and the resistance to machining-induced cracking were independent of the loading rate (ANOVA, p 〉 0.05). The elastic and plastic displacements depended on the loading rate through power laws. This loading rate-dependent deformation behaviour was explained by the maximum shear stress generated underneath the indenter and the indentation energy. The plastic deformation components and the indentation absorbed energy at all loading rates were higher than the elastic deformation components and the elastic strain energy, respectively. Finally, we established the linkage among the pore structure, indentation behaviour and machinability of pre-sintered zirconia. 展开更多
关键词 Elastic/plastic deformation Loading rate Nanoindentation Pre-sintered zirconia resistance to machining-induced cracking resistance to plasticity
原文传递
Designing multilayer diamond like carbon coatings for improved mechanical properties 被引量:6
3
作者 Mohammad Sharear Kabir Zhifeng Zhou +1 位作者 Zonghan Xie Paul Munroe 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第6期108-117,共10页
New multilayer coatings were produced by incorporating alternating soft and hard DLC layers enabled by varying the bias voltage during deposition process while maintaining a constant hard-to-soft layer thickness ratio... New multilayer coatings were produced by incorporating alternating soft and hard DLC layers enabled by varying the bias voltage during deposition process while maintaining a constant hard-to-soft layer thickness ratio.These coatings were deposited onto a Cr/Cr Cxgraded layer by closed field unbalanced magnetron sputtering(CFUBMS).The cross-sectional analysis of the coatings showed that the multilayer coatings possess sharp interfaces between the soft and hard layers with the hard to soft layer thickness ratio(1:1.33)constant in all the coatings.Raman analysis uncovered the increasing sp^(3)character of the DLC coatings as a result of decreasing ID/IGratio and increasing full width at half maximum(FWHM)values of the G band peak induced supposedly by an increase in bias voltage during hard layer deposition.Nanoindentation tests showed an increase in hardness of the DLC coatings which can be correlated with the increase in the sp^(3)content of the coatings as well as decreasing sp^(2)-C cluster size,as calculated from the ID/IGratio.Furthermore,the coatings exhibited excellent plastic deformation resistance and adhesion strength upon microindentation and scratch testing,respectively.Although further investigations are required to assess coating durability,the multilayer design could offer the DLC coatings with a rare opportunity to combine the high hardness with damage resistance with a constant bilayer thickness and without the need to introduce complex multilayer system. 展开更多
关键词 Diamond like carbon(DLC) Closed field unbalanced magnetron sputtering(CFUBMS) sp^(3)Character NANOINDENTATION plastic deformation resistance Scratch adhesion behaviour
原文传递
Growth Kinetics of Laves Phase and Its Effect on Creep Rupture Behavior in 9Cr Heat Resistant Steel 被引量:1
4
作者 Zhi-xin XIA Chuan-yang WANG +3 位作者 Chen LEI Yun-ting LAI Yan-fen ZHAO Lu ZHANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第7期685-691,共7页
The effects of Laves phase formation and growth on creep rupture behaviors of P92 steel at 883 K were studied.The microstructural evolution was characterized using scanning electron microscopy and transmission electro... The effects of Laves phase formation and growth on creep rupture behaviors of P92 steel at 883 K were studied.The microstructural evolution was characterized using scanning electron microscopy and transmission electron microscopy.Kinetic modeling was carried out using the software DICTRA.The results indicated Fe_2(W,Mo)Laves phase has formed during creep with 200 MPa applied stress at 883 Kfor 243 h.The experimental results showed a good agreement with thermodynamic calculations.The plastic deformation of laths is the main reason of creep rupture under the applied stress beyond 160 MPa,whereas,creep voids initiated by coarser Laves phase play an effective role in creep rupture under the applied stress lower than 160 MPa.Laves phase particles with the mean size of 243 nm lead to the change of creep rupture feature.Microstructures at the vicinity of fracture surface,the gage portion and the threaded ends of creep rupture specimens were also observed,indicating that creep tensile stress enhances the coarsening of Laves phase. 展开更多
关键词 heat resistant steel Laves phase microstructure plastic deformation creep rupture
原文传递
Tribological properties of multilayer tetrahedral amorphous carbon coatings deposited by filtered cathodic vacuum arc deposition
5
作者 Young-Jun JANG Jae-Il KIM +1 位作者 WooYoung LEE Jongkuk KIM 《Friction》 SCIE EI CAS CSCD 2021年第5期1292-1302,共11页
Tetrahedral amorphous carbon(ta‐C)has emerged as an excellent coating material for improving the reliability of application components under high normal loads.Herein,we present the results of our investigations regar... Tetrahedral amorphous carbon(ta‐C)has emerged as an excellent coating material for improving the reliability of application components under high normal loads.Herein,we present the results of our investigations regarding the mechanical and tribological properties of a 2‐μm‐thick multilayer ta‐C coating on high‐speed steel substrates.Multilayers composed of alternating soft and hard layers are fabricated using filtered a cathodic vacuum arc with alternating substrate bias voltages(0 and 100 V or 0 and 150 V).The thickness ratio is discovered to be 1:3 for the sp2‐rich and sp3‐rich layers.The results show that the hardness and elastic modulus of the multilayer ta‐C coatings increase with the sp3 content of the hard layer.The hardness reached approximately 37 GPa,whereas an improved toughness and a higher adhesion strength(>29 N)are obtained.The friction performance(μ=0.07)of the multilayer coating is similar to that of the single layer ta‐C thick coating,but the wear rate(0.13×10^(–6) mm^(3)/(N∙m))improved under a high load of 30 N.We further demonstrate the importance of the multilayer structure in suppressing crack propagation and increasing the resistance to plastic deformation(H3/E2)ratio. 展开更多
关键词 tetrahedral amorphous carbon(ta‐C) filtered cathodic vacuum arc deposition multilayer coatings alternating substrate bias voltage wear resistance plastic deformation resistance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部