期刊文献+
共找到691篇文章
< 1 2 35 >
每页显示 20 50 100
A Review of Contact Electrification at Diversified Interfaces and Related Applications on Triboelectric Nanogenerator
1
作者 Jun Hu Mitsumasa Iwamoto Xiangyu Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期106-130,共25页
The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables... The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG. 展开更多
关键词 contact electrification interfaceS Triboelectric nanogenerators Diversified applications
下载PDF
Dynamics of Low-Viscosity Liquids Interface in an Unevenly Rotating Vertical Layer
2
作者 Victor Kozlov Vladimir Saidakov Nikolai Kozlov 《Fluid Dynamics & Materials Processing》 EI 2024年第4期693-703,共11页
The behavior of two immiscible low-viscosity liquids differing in density and viscosity in a vertical flat layer undergoing modulated rotation is experimentally studied.The layer has a circular axisymmetric boundary.I... The behavior of two immiscible low-viscosity liquids differing in density and viscosity in a vertical flat layer undergoing modulated rotation is experimentally studied.The layer has a circular axisymmetric boundary.In the absence of modulation of the rotation speed,the interphase boundary has the shape of a short axisymmetric cylinder.A new effect has been discovered,under the influence of rotation speed modulation,the interface takes on a new dynamic equilibrium state.A more viscous liquid covers the end boundaries of the layer in the form of thin films,which have the shape of round spots of almost constant radius;with increasing amplitude of the velocity modulation,the wetting boundary expands.It is found that upon reaching the critical amplitude of oscillations,the film of a viscous liquid loses stability,and the outer edge of the wetting spot collapses and takes on a feathery structure.It is shown that this threshold is caused by the development of the Kelvin-Helmholtz oscillatory instability of the film.The spreading radius of a spot of light viscous liquid and its stability are studied depending on the rotation rate,amplitude,and frequency of rotation speed modulation.The discovered averaged effects are determined by different oscillatory interaction of fluids with the end-walls of the cell,due to different viscosities.The effect of films forming can find application in technological processes to intensify mass transfer at interphase boundaries. 展开更多
关键词 ROTATION OSCILLATIONS immiscible fluids contact line interface film dynamic equilibrium Nomenclature frot
下载PDF
A Review on Engineering Design for Enhancing Interfacial Contact in Solid-State Lithium–Sulfur Batteries
3
作者 Bingxin Qi Xinyue Hong +4 位作者 Ying Jiang Jing Shi Mingrui Zhang Wen Yan Chao Lai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期219-252,共34页
The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high in... The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high interfacial impedances existing between the SSEs and the electrodes(both lithium anodes and sulfur cathodes)hinder the charge transfer and intensify the uneven deposition of lithium,which ultimately result in insufficient capacity utilization and poor cycling stability.Hence,the reduction of interfacial resistance between SSEs and electrodes is of paramount importance in the pursuit of efficacious solid-state batteries.In this review,we focus on the experimental strategies employed to enhance the interfacial contact between SSEs and electrodes,and summarize recent progresses of their applications in solidstate Li–S batteries.Moreover,the challenges and perspectives of rational interfacial design in practical solid-state Li–S batteries are outlined as well.We expect that this review will provide new insights into the further technique development and practical applications of solid-state lithium batteries. 展开更多
关键词 Solid-state lithium–sulfur batteries Solid-state electrolytes Electrode/electrolyte interface interfacial engineering Enhancing interfacial contact
下载PDF
Back interface passivation for ultrathin Cu(In,Ga)Se_(2) solar cells with Schottky back contact: A trade-off of electrical effects
4
作者 涂野 李勇 殷官超 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期621-628,共8页
Back interface passivation reduces the back recombination of photogenerated electrons, whereas aggravates the blocking of hole transport towards back contact, which complicate the back interface engineering for ultrat... Back interface passivation reduces the back recombination of photogenerated electrons, whereas aggravates the blocking of hole transport towards back contact, which complicate the back interface engineering for ultrathin CIGSe solar cells with a Schottky back contact. In this work, theoretical explorations were conducted to study how the two contradictory electrical effects impact cell performance. For ultrathin CIGSe solar cells with a pronounced Schottky potential barrier(E_(h)> 0.2 eV), back interface passivation produces diverse performance evolution trends, which are highly dependent on cell structures and properties. Since a back Ga grading can screen the effect of reduced recombination of photogenerated electrons from back interface passivation, the hole blocking effect predominates and back interface passivation is not desirable. However, when the back Schottky diode merges with the main pn junction due to a reduced absorber thickness,the back potential barrier and the hole blocking effect is much reduced on this occasion. Consequently, cells exhibit the same efficiency evolution trend as ones with an Ohmic contact, where back interface passivation is always advantageous.The discoveries imply the complexity of back interface passivation and provide guidance to manipulate back interface for ultrathin CIGSe solar on TCOs with a pronounced Schottky back contact. 展开更多
关键词 ultrathin cigse solar cells Schottky back contact back interface passivation back recombination hole blocking
下载PDF
Spin Polarization at Organic-Ferromagnetic Interface: Effect of Contact Configuration
5
作者 李营 张广平 +4 位作者 谢震 张朝 任俊峰 王传奎 胡贵超 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第3期344-348,I0002,共6页
Based on ab initio theory, the interracial spin polarization of a benzene-dithiolate molecule vertically adsorbed on a nickel surface is investigated by adopting different microscopic con- tact configurations. The res... Based on ab initio theory, the interracial spin polarization of a benzene-dithiolate molecule vertically adsorbed on a nickel surface is investigated by adopting different microscopic con- tact configurations. The results demonstrate a strong dependence of the interfacial spin polarization on the contact configuration, where the sign of spin polarization may vary from positive to negative with the change of contact configuration. By analyzing the projected density of states, an interracial orbital hybridization between the 3d orbital of the nickel atom and the sp3 hybridized orbital of the sulfur atom is observed. We also simulated the interracial adsorption in mechanically controllable break junction experiments. The magne- toresistance obtained from Julliere model is about 27% based on the calculated interracial spin polarization, which is consistent with experimental measurement. 展开更多
关键词 Organic spintronics Spin polarization interface contact configuration
下载PDF
A METHOD FOR THE ANALYSIS OF DYNAMIC RESPONSE OF STRUCTURE CONTAINING NON-SMOOTH CONTACTABLE INTERFACES 被引量:3
6
作者 刘晶波 刘书 杜修力 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1999年第1期63-72,共10页
A novel single-step method is proposed for the analysis of dynamic response of visco-elastic structures containing non-smooth contactable interfaces. In the method, a two-level algorithm is employed for dealing with a... A novel single-step method is proposed for the analysis of dynamic response of visco-elastic structures containing non-smooth contactable interfaces. In the method, a two-level algorithm is employed for dealing with a nonlinear boundary condition caused by the dynamic contact of interfaces. At the first level, an explicit method is adopted to calculate nodal displacements of global viscoelastic system without considering the effect of dynamic contact of interfaces and at the second level, by introducing contact conditions of interfaces, a group of equations of lower order is derived to calculate dynamic contact normal and shear forces on the interfaces. The method is convenient and efficient for the analysis of problems of dynamic contact. The accuracy of the method is of the second order and the numerical stability condition is wider than that of other explicit methods. 展开更多
关键词 non-smooth contactable interfaces visco-elastic structure dynamic response
下载PDF
Experimental investigation of high temperature thermal contact resistance with interface material 被引量:3
7
作者 Xiaoping Zheng1,Donghuan Liu,2,3 Dong Wei,4 and Xinchun Shang 2,3 1) Applied Mechanics Laboratory,Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China 2) Department of Applied Mechanics,University of Science & Technology Beijing,Beijing 100083,China 3) National Center for Materials Service Safety,University of Science & Technology Beijing,Beijing 100083,China 4) China Aerodynamics Research and Development Center,Mianyang 621000,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第5期41-44,共4页
Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a... Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance. 展开更多
关键词 thermal contact resistance interface material experimental research high temperature alloy C/C composite material
下载PDF
BODY PRESSURE DISTRIBUTION OF AUTOMOBILE DRIVING HUMAN MACHINE CONTACT INTERFACE 被引量:1
8
作者 CHEN Juan HONG Jun ZHANG E LIANG Jian LU Bingheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第4期66-70,共5页
Aiming at the fatigue and comfort issues of human-machine contact interface in automobile driving and based on physiological and anatomical principle, the physiological and biochemical process of muscles and nerves in... Aiming at the fatigue and comfort issues of human-machine contact interface in automobile driving and based on physiological and anatomical principle, the physiological and biochemical process of muscles and nerves in the formation and development of fatigue is analyzed systematically. The fatigue-causing physiological characteristic indexes are mapped to biomechanical indexes like muscle stress-strain, the compression deformation of blood vessels and nerves etc. from the perspective of formation mechanism. The geometrical model of skeleton and parenchyma is established by applying CT-scanned body data and MRI images. The general rule of comfort body pressure distribution is acquired through the analysis of anatomical structure of buttocks and femoral region. The comprehensive test platform for sitting comfort of 3D adjustable contact interface is constructed. The test of body pressure distribution of human-machine contact interface and its comparison with subjective evaluation indicates that the biomechanical indexes of automobile driving human-machine contact interface and body pressure distribution rule studied can effectively evaluate the fatigue and comfort issues of human-machine contact interface and provide theoretical basis for the optimal design of human-machine contact interface. 展开更多
关键词 BIOMECHANICS contact interface FATIGUE Body pressure distribution
下载PDF
Modeling Methods and Test Verification of Root Insert Contact Interface for Wind Turbine Blade 被引量:1
9
作者 Li Hui Wang Tongguang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期9-15,共7页
Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the meta... Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the metal contact interface,LMOM is proposed to analyze the load path and stress distribution characteristics,while GMM is used to calculate and analyze the stress distribution characteristics of the resin layer established between the bushing and composite layers of root insert.To validate the GMM,a tension test is carried out.The result successfully shows that the shear strain expresses a similar strain distribution tendency with the GMM′s results. 展开更多
关键词 root insert modeling methods mesh optimization contact interface tension test
下载PDF
Diamond Film Synthesis with a DC Plasma Jet:Effect of the Contacting Interface between Substrate and Base on the Substrate Temperature 被引量:1
10
作者 Rongfa CHEN Dunwen ZUO +2 位作者 Feng XU Duoseng LI Min WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第4期495-498,共4页
The contacting interface between the substrate and water-cooled base is vital to the substrate temperature during diamond films deposition by a DC (direct current) plasma jet. The effects of the solid contacting are... The contacting interface between the substrate and water-cooled base is vital to the substrate temperature during diamond films deposition by a DC (direct current) plasma jet. The effects of the solid contacting area,conductive materials and fixing between the substrate and the base were investigated without affecting the other parameters. Experimental results indicated that the preferable solid contacting area was more than 60% of total contacting areal; the particular Sn-Pb alloy was more suitable for conducting heat and the concentric fixing ring was a better setting for controlling the substrate temperature. The result was explained in terms of the variable thermal contact resistance at the interface between substrate and base. The diamond films were analyzed by scanning electron microscopy (SEM) for morphology, X-ray diffraction (XRD) for the intensity of characteristic spectroscopy and Raman spectroscopy for structure. 展开更多
关键词 Diamond film Substrate temperature contacting interface DC arc plasma jet
下载PDF
Prediction of curved oil–water interface in horizontal pipes using modified model with dynamic contact angle 被引量:2
11
作者 Hongxin Zhang Lusheng Zhai +2 位作者 Ruoyu Liu Cong Yan Ningde Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第3期698-711,共14页
In this study,interface shapes of horizontal oil–water two-phase flow are predicted by using Young-Laplace equation model and minimum energy model.Meanwhile,the interface shapes of horizontal oil–water twophase flow... In this study,interface shapes of horizontal oil–water two-phase flow are predicted by using Young-Laplace equation model and minimum energy model.Meanwhile,the interface shapes of horizontal oil–water twophase flow in a 20 mm inner diameter pipe are measured by a novel conductance parallel-wire array probe(CPAP).It is found that,for flow conditions with low water holdup,there is a large deviation between the model-predicted interface shape and the experimentally measured one.Since the variation of pipe wetting characteristics in the process of fluid flow can lead to the changes of the contact angle between the fluid and the pipe wall,the models mentioned above are modified by considering dynamic contact angle.The results indicate that the interface shapes predicted by the modified models present a good consistence with the ones measured by CPAP. 展开更多
关键词 Oil–water two-phase flow Curved interface Conductance parallel-wire array probes Dynamic contact angle
下载PDF
Numerical investigation on interface enhancement mechanism of Ag-SnO_(2) contact materials with Cu additive 被引量:1
12
作者 MAYuan-yuan LI Gui-jing FENGWen-jie 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1085-1097,共13页
The electrical contact and mechanical performances of Ag-SnO_(2) contact materials are often improved by additives,especially Cu and its oxides.To reveal the improvement mechanism of metal additive,the effects of Cu n... The electrical contact and mechanical performances of Ag-SnO_(2) contact materials are often improved by additives,especially Cu and its oxides.To reveal the improvement mechanism of metal additive,the effects of Cu nanoparticles on the interface strength and failure behavior of the Ag-SnO_(2) contact materials are investigated by numerical simulations and experiments.Three-dimensional representative volume element(RVE)models for the Ag-SnO_(2) materials without and with Cu nanoparticles are established,and the cohesive zone model is used to simulate the interface debonding process.The results show that the stress−strain relationships and failure modes predicted by the simulation agree well with the experimental ones.The adhesion strengths of the Ag/SnO_(2) and Ag/Cu interfaces are respectively predicted to be 100 and 450 MPa through the inverse method.It is found that the stress concentration around the SnO_(2) phase is the primary reason for the interface debonding,which leads to the failure of Ag-SnO_(2) contact material.The addition of Cu particles not only improves the interface strength,but also effectively suppresses the initiation and propagation of cracks.The results have an reference value for improving the processability of Ag based contact materials. 展开更多
关键词 Ag-SnO_(2)contact material numerical simulation interface damage failure behavior
下载PDF
The Effects of Contact Interface on the Friction Characteristics of Self-assembly Monolayers
13
作者 张会臣 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第B10期22-24,共3页
The effects of different contact interfaces on the friction characteristics of OTS self-assembled monolayers were investigated by a universal micro-tribometer in different sliding velocities. The results indicate that... The effects of different contact interfaces on the friction characteristics of OTS self-assembled monolayers were investigated by a universal micro-tribometer in different sliding velocities. The results indicate that there exist lower friction coefficients between OTS SAMs and Ti, Ni and Cu films deposited on GCr15 steel balls than those between OTS SAMs and GCr15 steel ball. The friction coefficient between OTS SAMs and Ti film is the largest, and the friction coefficient between OTS SAMs and Cu film is the least in these three films, which depends on the intrinsic characteristics of the materials. The friction coefficients between OTS SAMs and GCr15 steel ball and three nanometer films increase with the sliding velocity increasing, which can be explained by the relaxation characteristics of OTS molecules. 展开更多
关键词 self-assembled monolayers interface contact FRICTION
下载PDF
Influence of Friction Interface Contact on Ultrasonic Motor Efficiency Under Static Conditions
14
作者 张毅锋 张武 +3 位作者 肖爱武 朱萌 潘云华 张小亚 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第2期163-173,共11页
The friction interface matching plays a deterministic role in the motor efficiency,and the microcosmic contact status of friction interface should be investigated to improve the ultrasonic motor performance.The main p... The friction interface matching plays a deterministic role in the motor efficiency,and the microcosmic contact status of friction interface should be investigated to improve the ultrasonic motor performance.The main purpose is to improve the effective output power of ultrasonic motor.Hence,one studies the contact condition of the friction interface of the ultrasonic motor,analyzes the micro condition of contact interface through finite element analysis,optimizes unreasonable structures,and compares the two different-structure ultrasonic motors through experiments.The results reflect the necessity of optimization.After optimization,the stator and rotor deform after pre-pressure and the contact interface of them full contact theoretically.When reaching heat balance the effective output of the motor is 37%,and the average effective output efficiency is 2.384 times higher than that of the unoptimized.It can be seen that the total consumption of the ultrasonic motor system decreases significantly.Therefore,when using in certain system the consumption taken from the system will decreases largely,especially in the system with a strict consumption control. 展开更多
关键词 ultrasonic motor friction interface contact area EFFICIENCY
下载PDF
Analysis of composite material interface crack face contact and friction effects using a new node-pairs contact algorithm
15
作者 钟志鹏 何郁波 万水 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期333-340,共8页
A new node-pairs contact algorithm is proposed to deal with a composite material or bi-material interface crack face contact and friction problem (e.g., resistant coating and thermal barrier coatings) subjected to c... A new node-pairs contact algorithm is proposed to deal with a composite material or bi-material interface crack face contact and friction problem (e.g., resistant coating and thermal barrier coatings) subjected to complicated load conditions. To decrease the calculation scale and calculation errors, the local Lagrange multipliers are solved only on a pair of contact nodes using the Jacobi iteration method, and the constraint modification of the tangential multipliers are required. After the calculation of the present node-pairs Lagrange multiplier, it is turned to next contact node-pairs until all node-pairs have finished. Compared with an ordinary contact algorithm, the new local node-pairs contact algorithm is allowed a more precise element on the contact face without the stiffness matrix singularity. The stress intensity factors (SIFs) and the contact region of an infinite plate central crack are calculated and show good agreement with those in the literature. The contact zone near the crack tip as well as its influence on singularity of stress fields are studied. Furthermore, the frictional contacts are also considered and found to have a significant influence on the SIFs. The normalized mode-II stress intensity factors KII for the friction coefficient decrease by 16% when f changes from 1 to 0. 展开更多
关键词 contact and friction node-pairs contact algorithm interface crack mixed mode loading stress intensity factors
下载PDF
Influence of interface states, conduction band offset, and front contact on the performance of a-SiC:H(n)/c-Si(p)heterojunction solar cells
16
作者 乔治 冀建利 +2 位作者 张彦立 刘虎 李同锴 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期534-540,共7页
P-type silicon heterojunction(SHJ) solar cells with a-SiC:H(n) emitters were studied by numerical computer simulation in this paper. The influence of interface states, conduction band offset, and front contact on... P-type silicon heterojunction(SHJ) solar cells with a-SiC:H(n) emitters were studied by numerical computer simulation in this paper. The influence of interface states, conduction band offset, and front contact on the performance of a-SiC:H(n)/c-Si(p) SHJ solar cells was investigated systematically. It is shown that the open circuit voltage(Voc) and fill factor(F F) are very sensitive to these parameters. In addition, by analyzing equilibrium energy band diagram and electric field distribution, the influence mechanisms that interface states, conduction band offset, and front contact impact on the carrier transport, interface recombination and cell performance were studied in detail. Finally, the optimum parameters for the a-SiC:H(n)/c-Si(p) SHJ solar cells were provided. By employing these optimum parameters, the efficiency of SHJ solar cell based on p-type c-Si was significantly improved. 展开更多
关键词 silicon heterojunction solar cells interface states band offset front contact
下载PDF
CONTACT FRICTION ANALYSIS AND STRESS OSCILLATION SUPPRESSION WITH A SIMPLE INTERFACE ELEMENT
17
作者 Lei Xiaoyan (Department of Civil Engineering,East China Jiaotong University,Nanchang 330013,China) 《Acta Mechanica Solida Sinica》 SCIE EI 2000年第1期33-41,共9页
A simple interface element for analyzing contact friction problems is developed. Taking nodal displacements and contact stresses as unknowns, this element can simulate frictional slippage, decoupling and re-bonding of... A simple interface element for analyzing contact friction problems is developed. Taking nodal displacements and contact stresses as unknowns, this element can simulate frictional slippage, decoupling and re-bonding of two bodies initially mating or having gaps at a common interface. The method is based on the Finite Element Method and load incremental theory. The geometric and static constraint conditions on contact surfaces are treated as additional conditions and are included in stiffness equations. This simple element has the advantages of easy implementation into standard finite element programs and fast speed for convergence as well as high accuracy for stress distribution in interface. Undesirable stress oscillations are also investigated whenever large stress gradients exist over the contact surfaces. Exact integration or the conventional Gauss integration scheme used to evaluate the interpolation function matrix of the interface element is found to be the source of the oscillations. Eigenmode analysis demonstrates that the stress behavior of an interface element can be improved by using the Newton-Cotes integration scheme. Finally, the test example of a strip footing problem is presented. 展开更多
关键词 contact friction interface element stress oscillation eigenmode analysis
下载PDF
Experimental analysis of interface contact behavior using a novel image processing method
18
作者 Jingyu Han Zhijun Luo +1 位作者 Yuling Zhang Shaoze Yan 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期412-423,共12页
The spatial and temporal evolution of real contact area of contact interface with loads is a challenge.It is generally believed that there is a positive linear correlation between real contact area and normal load.How... The spatial and temporal evolution of real contact area of contact interface with loads is a challenge.It is generally believed that there is a positive linear correlation between real contact area and normal load.However,with the development of measuring instruments and methods,some scholars have found that the growth rate of real contact area will slow down with the increase of normal load under certain conditions,such as large-scale interface contact with small roughness surface,which is called the nonlinear phenomenon of real contact area.At present,there is no unified conclusion on the explanation of this phenomenon.We set up an experimental apparatus based on the total reflection principle to verify this phenomenon and analyze its mechanism.An image processing method is proposed,which can be used to quantitative analysis micro contact behaviors on macro contact phenomenon.The weighted superposition method is used to identify micro contact spots,to calculate the real contact area,and the color superimposed image is used to identify micro contact behaviors.Based on this method,the spatiotemporal evolution mechanism of real contact area nonlinear phenomena is quantitatively analyzed.Furthermore,the influence of nonlinear phenomenon of real contact area on the whole loading and unloading process is analyzed experimentally.It is found that the effects of fluid between contact interface,normal load amplitude and initial contact state on contact behavior cannot be ignored in large-scale interface contact with small roughness surface. 展开更多
关键词 real contact area total reflection method micro-contact spots interface contact experimental analysis
下载PDF
Ohmic Contact at Al/TiO_2/n-Ge Interface with TiO_2 Deposited at Extremely Low Temperature
19
作者 Yi Zhang Huan Liu +3 位作者 Gen-Quan Han Yan Liu Jin-Cheng Zhang Yue Hao 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第2期116-119,共4页
TiO2deposited at extremely low temperature of 120°C by atomic layer deposition is inserted between metal and n-Ge to relieve the Fermi level pinning. X-ray photoelectron spectroscopy and cross-sectional transmiss... TiO2deposited at extremely low temperature of 120°C by atomic layer deposition is inserted between metal and n-Ge to relieve the Fermi level pinning. X-ray photoelectron spectroscopy and cross-sectional transmission electron microscopy indicate that the lower deposition temperature tends to effectively eliminate the formation of GeOxto reduce the tunneling resistance. Compared with TiO2deposited at higher temperature of 250°C,there are more oxygen vacancies in lower-temperature-deposited TiO2, which will dope TiO2contributing to the lower tunneling resistance. Al/TiO2/n-Ge metal-insulator-semiconductor diodes with 2 nm 120°C deposited TiO2achieves 2496 times of current density at-0.1 V compared with the device without the TiO2interface layer case, and is 8.85 times larger than that with 250°C deposited TiO2. Thus inserting extremely low temperature deposited TiO2to depin the Fermi level for n-Ge may be a better choice. 展开更多
关键词 TIO Ohmic contact at Al/TiO2/n-Ge interface with TiO2 Deposited at Extremely Low Temperature Ge Al
下载PDF
Waveguide mechanism and design of thermal contact resistance at metal rheologic interface
20
作者 胡仕成 黄明辉 +1 位作者 李晓谦 钟掘 《中国有色金属学会会刊:英文版》 CSCD 2003年第3期579-584,共6页
The main factors and their varied disciplines affecting the heat transfer at the metal rheologic interface were studied from the waveguide mechanism of heat transfer of electrons and phonons, guiding the design of the... The main factors and their varied disciplines affecting the heat transfer at the metal rheologic interface were studied from the waveguide mechanism of heat transfer of electrons and phonons, guiding the design of thermal contact resistance through studying the microscale mechanism of heat transfer at the interface. The results show that electron has stronger quantum tunneling effect when the thickness of oxide film is smaller than de Broglie wavelength of electron and the heat conduction of oxide film produces microscale effect. The thickness and nature of oxide film dominate the heat transfer at the metal rheologic interface. The main means to design the interface contact conductance are to control the formation of oxide film as well as the process of machining of roller surface and lubrication of interface. 展开更多
关键词 热传递 波导装置 热接触阻力 自由电子 氧化物薄膜 界面 流变学
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部