In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based...In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.展开更多
A boundary collocation method based on the least-square technique and a corresponding adaptive computation process have been developed for the plate bending problem. The trial functions are constructed using a series ...A boundary collocation method based on the least-square technique and a corresponding adaptive computation process have been developed for the plate bending problem. The trial functions are constructed using a series of the biharmonic polynomials, and the local error indicators are given by the residuals of the energy density on the boundary. In comparison with the conventional collocation methods, the solution accuracy in the present method can be improved in an economical and efficient way. In order to demonstrate the efficiency and advantages of the adaptive boundary collocation method proposed in this paper, two numerical examples are presented for circular plates subjected to uniform loads and restrained by mixed boundary conditions. The numerical results for the examples show good agreement with ones presented in the literature.展开更多
For non-asymmetrical bending problems of elastic annular plates, the exact solutions are not fond. To bending problems of infinite annular plate with two different boundary conditions, based on the boundary integral f...For non-asymmetrical bending problems of elastic annular plates, the exact solutions are not fond. To bending problems of infinite annular plate with two different boundary conditions, based on the boundary integral formula,the natural boundary integral equation for the boundary value problems of the biharmonic equation and the condition of bending moment in infinity,bending solutions under non-symmetrical loads are gained by the Fourier series and convolution formulae. The formula for the solutions has nicer convergence velocity and high computational accuracy, and the calculating process is simpler. Solutions of the given examples are compared with the finite element method. The textual solutions of moments near the loads are better than the finite element method to the fact that near the concentrative loads the inners forces trend to infinite.展开更多
The boundary value problem of plate bending problem on two_parameter foundation was discussed.Using two series of the high_order fundamental solution sequences, namely, the fundamental solution sequences for the multi...The boundary value problem of plate bending problem on two_parameter foundation was discussed.Using two series of the high_order fundamental solution sequences, namely, the fundamental solution sequences for the multi_harmonic operator and Laplace operator, applying the multiple reciprocity method(MRM), the MRM boundary integral equation for plate bending problem was constructed. It proves that the boundary integral equation derived from MRM is essentially identical to the conventional boundary integral equation. Hence the convergence analysis of MRM for plate bending problem can be obtained by the error estimation for the conventional boundary integral equation. In addition, this method can extend to the case of more series of the high_order fundamental solution sequences.展开更多
Using double set parameter method, a 12-parameter trapezoidal plate bending element is presented. The first set of degrees of freedom, which make the element convergent, are the values at the four vertices and the mid...Using double set parameter method, a 12-parameter trapezoidal plate bending element is presented. The first set of degrees of freedom, which make the element convergent, are the values at the four vertices and the middle points of the four sides together with the mean values of the outer normal derivatives along four sides. The second set of degree of freedom, which make the number of unknowns in the resulting discrete system small and computation convenient are values and the first derivatives at the four vertices of the element. The convergence of the element is proved.展开更多
This paper provides a simplified derivation for error estimates of the TRUNC plate element. The error analysis for the problem with mixed boundary conditions is also discussed.
In this paper, a class of rectangular finite elements for 2m-th-oder elliptic boundary value problems in n-dimension (m, n ≥1) is proposed in a canonical fashion, which includes the (2m - 1)-th Hermite interpolat...In this paper, a class of rectangular finite elements for 2m-th-oder elliptic boundary value problems in n-dimension (m, n ≥1) is proposed in a canonical fashion, which includes the (2m - 1)-th Hermite interpolation element (n = 1), the n-linear finite element (m = 1) and the Adini element (m = 2). A nonconforming triangular finite element for the plate bending problem, with convergent order (O(h2), is also proposed.展开更多
文摘In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.
基金the National Natural Science Foundation of China (No. 10472051)
文摘A boundary collocation method based on the least-square technique and a corresponding adaptive computation process have been developed for the plate bending problem. The trial functions are constructed using a series of the biharmonic polynomials, and the local error indicators are given by the residuals of the energy density on the boundary. In comparison with the conventional collocation methods, the solution accuracy in the present method can be improved in an economical and efficient way. In order to demonstrate the efficiency and advantages of the adaptive boundary collocation method proposed in this paper, two numerical examples are presented for circular plates subjected to uniform loads and restrained by mixed boundary conditions. The numerical results for the examples show good agreement with ones presented in the literature.
基金Project supported by the National Basic Research Program of China (No. 2007CB209400)the National Nature Fond (No. 50774077 and 50774081)the National Fond of Author of Doctor Thesis (100760)
文摘For non-asymmetrical bending problems of elastic annular plates, the exact solutions are not fond. To bending problems of infinite annular plate with two different boundary conditions, based on the boundary integral formula,the natural boundary integral equation for the boundary value problems of the biharmonic equation and the condition of bending moment in infinity,bending solutions under non-symmetrical loads are gained by the Fourier series and convolution formulae. The formula for the solutions has nicer convergence velocity and high computational accuracy, and the calculating process is simpler. Solutions of the given examples are compared with the finite element method. The textual solutions of moments near the loads are better than the finite element method to the fact that near the concentrative loads the inners forces trend to infinite.
文摘The boundary value problem of plate bending problem on two_parameter foundation was discussed.Using two series of the high_order fundamental solution sequences, namely, the fundamental solution sequences for the multi_harmonic operator and Laplace operator, applying the multiple reciprocity method(MRM), the MRM boundary integral equation for plate bending problem was constructed. It proves that the boundary integral equation derived from MRM is essentially identical to the conventional boundary integral equation. Hence the convergence analysis of MRM for plate bending problem can be obtained by the error estimation for the conventional boundary integral equation. In addition, this method can extend to the case of more series of the high_order fundamental solution sequences.
基金This work is supported by NSFC(10171092)and NSF of Henan province
文摘Using double set parameter method, a 12-parameter trapezoidal plate bending element is presented. The first set of degrees of freedom, which make the element convergent, are the values at the four vertices and the middle points of the four sides together with the mean values of the outer normal derivatives along four sides. The second set of degree of freedom, which make the number of unknowns in the resulting discrete system small and computation convenient are values and the first derivatives at the four vertices of the element. The convergence of the element is proved.
基金The work was partly supported by NNSFC under the grant no. 10371076, E-Institutes of Shanghai Municipal Education Commission, N. E03004 and The Science Foundation of Shanghai under the grant no. 04JC14062. The second author is also engaged with Division of Computational Science, E-Institute of Shanghai Universities, Shanghai Normal University, China.
文摘This paper provides a simplified derivation for error estimates of the TRUNC plate element. The error analysis for the problem with mixed boundary conditions is also discussed.
基金The work was supported by the National Natural Science Foundation of China (10871011).
文摘In this paper, a class of rectangular finite elements for 2m-th-oder elliptic boundary value problems in n-dimension (m, n ≥1) is proposed in a canonical fashion, which includes the (2m - 1)-th Hermite interpolation element (n = 1), the n-linear finite element (m = 1) and the Adini element (m = 2). A nonconforming triangular finite element for the plate bending problem, with convergent order (O(h2), is also proposed.