Heat exchangers are devices in which heat is transferred from one fluid to another fluid as a result of temperature difference. Heat exchanger presented in the current paper in which inside the tubes flows water, but ...Heat exchangers are devices in which heat is transferred from one fluid to another fluid as a result of temperature difference. Heat exchanger presented in the current paper in which inside the tubes flows water, but outside the tubes flows air aims to enable cooling of circulating water, which serves to cool the engine of a machine. Such exchangers find application in the automotive industry as well as heating and cooling equipment and HVAC systems etc. The surface of the heat exchanger by the air side always tends to be much larger using surface fins in order to facilitate equalization of thermal resistance for both sides of the heat exchanger, because the rate of transmission of heat from the water side is much greater. Furthermore, the paper will present analytical and experimental studies involved for determination of performance of plate-fin heat exchanger for various flows of working fluids in order to get the highest values of performances i.e.: overall heat transfer coefficient U, efficiency of heat exchanger ε, maximal and real heat transferred, pressure drop, air velocity and Reynolds number from the air side of heat exchanger etc. The present scientific paper is based on the fact that from the experimental model made for laboratory conditions, conclusions are derived that can be used during installation of such heat exchanger on certain machines in order to predict their performance.展开更多
In this study,a new and effective improved Semi-Analytic and Semi-Empirical formula f(Pr)= (0.749999437Pr^(1/2))/((0.609+1.221Pr^(1/2)+1.238Pr)^(1/4))has been proposed to solve a conjugate problem with free convection...In this study,a new and effective improved Semi-Analytic and Semi-Empirical formula f(Pr)= (0.749999437Pr^(1/2))/((0.609+1.221Pr^(1/2)+1.238Pr)^(1/4))has been proposed to solve a conjugate problem with free convection in the incompressible laminar boundary layer flow and heat conduction in a solid wall for the flow passing a flat plate fin. A combination of flat-plate flow and flat-plate fin heat conduction has been considered in the present study.Finite -difference solutions for the interface temperature profiles and the heat transfer rates have been presented over the entire thermo-fluid-dynamic field for Prandtl numbers from 0.001 to 10000.First,the similar flow field has been solved by the Runge-Kutta method and the shooting methods,then the correlation equation of the local heat transfer coefficient have been obtained.Finally,the empirical formula has been substituted into the fin temperature heat conduction calculation processes to obtain the iterative solutions of the conjugate problems.展开更多
This paper presents the two-dimensional analysis for the efficiency of continuous plate fin-tube heat exchangers in staggered and in-lined arrangements under the dry, partially wet, and fully wet conditions for differ...This paper presents the two-dimensional analysis for the efficiency of continuous plate fin-tube heat exchangers in staggered and in-lined arrangements under the dry, partially wet, and fully wet conditions for different heat transfer coefficient (h = 20 W/m2K to h = 80 W/m2K) and air relative humidity over the full range from φ= 0 % to φ= 100%. It is shown that the fin efficiencies of the staggered arrangement are higher than those for the in-lined arrangement, and the fully wet fin efficiency is 10~20% lower than that for a dry fin. The conventional 1-D sector method underestimates the fin efficiency up to 4 % as compared to the 2-D analysis.展开更多
Objective To investigate the flow distribution in plate fin heat exchangers and optimize the design of header configuration for plate fin heat exchangers. Methods A mathematical model of header was proposed. The e...Objective To investigate the flow distribution in plate fin heat exchangers and optimize the design of header configuration for plate fin heat exchangers. Methods A mathematical model of header was proposed. The effects of the header configuration on the flow distribution in plate fin heat exchangers were investigated by CFD. The second header configuration with a two stage distributing structure was brought forward to improve the performance of flow distribution. Results It is found that the flow maldistribution is very serious in the direction of header length for the conventional header used in industry. The numerical predictions indicate that the improved header configurations can effectively improve the performance of flow distribution in plate fin heat exchangers. Conclusion The numerical simulation confirms that CFD should be a suitable tool for predicting the flow distribution. The method has a wide variety of applications in the design of plate fin heat exchangers.展开更多
The size of the heat exchanger is an important factor determining the dimensions of the cold box in helium cryogenic systems. In this paper, a counter-flow multi-stream plate-fin heat exchanger is optimized by means o...The size of the heat exchanger is an important factor determining the dimensions of the cold box in helium cryogenic systems. In this paper, a counter-flow multi-stream plate-fin heat exchanger is optimized by means of a spatial interpolation method coupled with a hybrid genetic algorithm.Compared with empirical correlations, this spatial interpolation algorithm based on a kriging model can be adopted to more precisely predict the Colburn heat transfer factors and Fanning friction factors of offset-strip fins. Moreover, strict computational fluid dynamics simulations can be carried out to predict the heat transfer and friction performance in the absence of reliable experimental data. Within the constraints of heat exchange requirements, maximum allowable pressure drop, existing manufacturing techniques and structural strength, a mathematical model of an optimized design with discrete and continuous variables based on a hybrid genetic algorithm is established in order to minimize the volume. The results show that for the first-stage heat exchanger in the EAST refrigerator, the structural size could be decreased from the original2.200?×?0.600?×?0.627(m^3) to the optimized 1.854?×?0.420?×?0.340(m3), with a large reduction in volume. The current work demonstrates that the proposed method could be a useful tool to achieve optimization in an actual engineering project during the practical design process.展开更多
Mathematical model of cross type multi-stream plate-fin heat exchanger is established.Meanwhile,mean square error of accumulative heat load is normalized by dimensionless,and the equations of temperature-difference un...Mathematical model of cross type multi-stream plate-fin heat exchanger is established.Meanwhile,mean square error of accumulative heat load is normalized by dimensionless,and the equations of temperature-difference uniformity factor are improved.Evaluation factors above and performance of heat exchanger are compared and analyzed by taking aircraft three-stream condenser as an example.The results demonstrate that the mean square error of accumulative heat load is common result of total heat load and excess heat load between passages.So it can be influenced by passage arrangement,flow inlet parameters as well as flow patterns.Dimensionless parameter of mean square error of accumulative heat load can reflect the influence of passage arrangement to heat exchange performance and will not change dramatically with the variation of flow inlet parameters and flow patterns.Temperature-difference uniformity factor is influenced by passage arrangement and flow patterns.It remains basically unchanged under a certain range of flow inlet parameters.展开更多
Natural convective heat transfer from a heated horizontal and vertical surfaces directly exposed into air which vertical fins, attached to a surface, project vertically downwards has been numerically studied. It has b...Natural convective heat transfer from a heated horizontal and vertical surfaces directly exposed into air which vertical fins, attached to a surface, project vertically downwards has been numerically studied. It has been assumed that the fins are everywhere at the temperature of the surface. The governing equations, written in dimensionless form, have been solved using the finite element procedure. The results show that vertical plate with vertical fins gives the best performance for natural cooling.展开更多
文摘Heat exchangers are devices in which heat is transferred from one fluid to another fluid as a result of temperature difference. Heat exchanger presented in the current paper in which inside the tubes flows water, but outside the tubes flows air aims to enable cooling of circulating water, which serves to cool the engine of a machine. Such exchangers find application in the automotive industry as well as heating and cooling equipment and HVAC systems etc. The surface of the heat exchanger by the air side always tends to be much larger using surface fins in order to facilitate equalization of thermal resistance for both sides of the heat exchanger, because the rate of transmission of heat from the water side is much greater. Furthermore, the paper will present analytical and experimental studies involved for determination of performance of plate-fin heat exchanger for various flows of working fluids in order to get the highest values of performances i.e.: overall heat transfer coefficient U, efficiency of heat exchanger ε, maximal and real heat transferred, pressure drop, air velocity and Reynolds number from the air side of heat exchanger etc. The present scientific paper is based on the fact that from the experimental model made for laboratory conditions, conclusions are derived that can be used during installation of such heat exchanger on certain machines in order to predict their performance.
基金National Science Council for the financial support through Grant.NSC 98-2221-E-434-009-
文摘In this study,a new and effective improved Semi-Analytic and Semi-Empirical formula f(Pr)= (0.749999437Pr^(1/2))/((0.609+1.221Pr^(1/2)+1.238Pr)^(1/4))has been proposed to solve a conjugate problem with free convection in the incompressible laminar boundary layer flow and heat conduction in a solid wall for the flow passing a flat plate fin. A combination of flat-plate flow and flat-plate fin heat conduction has been considered in the present study.Finite -difference solutions for the interface temperature profiles and the heat transfer rates have been presented over the entire thermo-fluid-dynamic field for Prandtl numbers from 0.001 to 10000.First,the similar flow field has been solved by the Runge-Kutta method and the shooting methods,then the correlation equation of the local heat transfer coefficient have been obtained.Finally,the empirical formula has been substituted into the fin temperature heat conduction calculation processes to obtain the iterative solutions of the conjugate problems.
基金Financial support for this work was provided by the "National Science Council of Taiwan", under contract NSC 90-2212-E006-125.
文摘This paper presents the two-dimensional analysis for the efficiency of continuous plate fin-tube heat exchangers in staggered and in-lined arrangements under the dry, partially wet, and fully wet conditions for different heat transfer coefficient (h = 20 W/m2K to h = 80 W/m2K) and air relative humidity over the full range from φ= 0 % to φ= 100%. It is shown that the fin efficiencies of the staggered arrangement are higher than those for the in-lined arrangement, and the fully wet fin efficiency is 10~20% lower than that for a dry fin. The conventional 1-D sector method underestimates the fin efficiency up to 4 % as compared to the 2-D analysis.
文摘Objective To investigate the flow distribution in plate fin heat exchangers and optimize the design of header configuration for plate fin heat exchangers. Methods A mathematical model of header was proposed. The effects of the header configuration on the flow distribution in plate fin heat exchangers were investigated by CFD. The second header configuration with a two stage distributing structure was brought forward to improve the performance of flow distribution. Results It is found that the flow maldistribution is very serious in the direction of header length for the conventional header used in industry. The numerical predictions indicate that the improved header configurations can effectively improve the performance of flow distribution in plate fin heat exchangers. Conclusion The numerical simulation confirms that CFD should be a suitable tool for predicting the flow distribution. The method has a wide variety of applications in the design of plate fin heat exchangers.
基金supported by funds of the Science Foundation within the Institute of Plasma Physics,Chinese Academy of Sciences(No.Y32ETY130B)
文摘The size of the heat exchanger is an important factor determining the dimensions of the cold box in helium cryogenic systems. In this paper, a counter-flow multi-stream plate-fin heat exchanger is optimized by means of a spatial interpolation method coupled with a hybrid genetic algorithm.Compared with empirical correlations, this spatial interpolation algorithm based on a kriging model can be adopted to more precisely predict the Colburn heat transfer factors and Fanning friction factors of offset-strip fins. Moreover, strict computational fluid dynamics simulations can be carried out to predict the heat transfer and friction performance in the absence of reliable experimental data. Within the constraints of heat exchange requirements, maximum allowable pressure drop, existing manufacturing techniques and structural strength, a mathematical model of an optimized design with discrete and continuous variables based on a hybrid genetic algorithm is established in order to minimize the volume. The results show that for the first-stage heat exchanger in the EAST refrigerator, the structural size could be decreased from the original2.200?×?0.600?×?0.627(m^3) to the optimized 1.854?×?0.420?×?0.340(m3), with a large reduction in volume. The current work demonstrates that the proposed method could be a useful tool to achieve optimization in an actual engineering project during the practical design process.
文摘Mathematical model of cross type multi-stream plate-fin heat exchanger is established.Meanwhile,mean square error of accumulative heat load is normalized by dimensionless,and the equations of temperature-difference uniformity factor are improved.Evaluation factors above and performance of heat exchanger are compared and analyzed by taking aircraft three-stream condenser as an example.The results demonstrate that the mean square error of accumulative heat load is common result of total heat load and excess heat load between passages.So it can be influenced by passage arrangement,flow inlet parameters as well as flow patterns.Dimensionless parameter of mean square error of accumulative heat load can reflect the influence of passage arrangement to heat exchange performance and will not change dramatically with the variation of flow inlet parameters and flow patterns.Temperature-difference uniformity factor is influenced by passage arrangement and flow patterns.It remains basically unchanged under a certain range of flow inlet parameters.
文摘Natural convective heat transfer from a heated horizontal and vertical surfaces directly exposed into air which vertical fins, attached to a surface, project vertically downwards has been numerically studied. It has been assumed that the fins are everywhere at the temperature of the surface. The governing equations, written in dimensionless form, have been solved using the finite element procedure. The results show that vertical plate with vertical fins gives the best performance for natural cooling.