As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundati...As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundation failure. Pile is a popular foundation used in collapsible loess. The squeezed branch and plate pile is a new type of pile developed in recent years and has not be used in a project before. In this paper three squeezed branch and plate piles are tested in collapsible loess after immersion processing. The results may be used for reference in similar construction project, and to provide theoretical references for de- signing of the squeezed branch and plate piles in engineering practice.展开更多
In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate wid...In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate width B/L,wave height Hs/D and incident angle θ0 on the wave forces were analyzed and discussed. The results showed that:(1) The envelopes of the total wave pressure were generally symmetrical along the direction of plate width under the incident angles(θ0) being 0°, 15°, 30°, 45° and 60°. In particular, the envelopes of wave pressure atθ0=30° were larger than all other cases.(2) The synchronous pressure distribution of the breakwater under oblique wave action was more complicated comparing to the normal incident waves.(3) Based on data analysis, an empirical formula was obtained to estimate the total vertical force of the twin-plate breakwater.This empirical formula can be a good reference for the design basis of engineering applications under specified wave conditions.展开更多
The compacted soil replacement procedure has been widely used worldwide for overcoming the unfavorable actions of some problematic soils,such as expansive,collapsing soils and ground fill.Compaction of the replacement...The compacted soil replacement procedure has been widely used worldwide for overcoming the unfavorable actions of some problematic soils,such as expansive,collapsing soils and ground fill.Compaction of the replacement soil is necessary for stabilizing such layer for improving its performance.In this study,gravelly-sand soil,which consists of gravel,sand and fines,is widely used as replacement soil in the field.The effect of fines content on possibly achieved density of such soil is experimentally investigated.A series of laboratory compaction and plate loading tests were carried out on the replaced soil at different fine contents of 0,5,8,10,12 and 15%.The results showed that,the supporting capacity of a replacement soil increases with the increase of its dry density.Therefore,the density of the replacement layer is the major factor controlling its behavior under the effect if external stresses.Compacted sand and gravelly sand are preferred materials when used for soil replacement.They tend to have better engineering properties,if they are placed according to the standard specifications.Another experimental stage of the effect of fines on the bearing capacity of circular footings on gravelly-sand with different percentages of fines was performed.It was found that a fine content of 10%gives the highest dry density,if the soil is compacted according to modified proctor specifications and with the addition of fines,the footing settlement increases and the ultimate bearing carrying capacity decreases.展开更多
文摘As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundation failure. Pile is a popular foundation used in collapsible loess. The squeezed branch and plate pile is a new type of pile developed in recent years and has not be used in a project before. In this paper three squeezed branch and plate piles are tested in collapsible loess after immersion processing. The results may be used for reference in similar construction project, and to provide theoretical references for de- signing of the squeezed branch and plate piles in engineering practice.
基金The National Natural Science Foundation of China under contract Nos 51079025 and 11272079the Research Funds from State Key Laboratory of Coastal and Offshore Engineering under contract No.LY1602
文摘In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate width B/L,wave height Hs/D and incident angle θ0 on the wave forces were analyzed and discussed. The results showed that:(1) The envelopes of the total wave pressure were generally symmetrical along the direction of plate width under the incident angles(θ0) being 0°, 15°, 30°, 45° and 60°. In particular, the envelopes of wave pressure atθ0=30° were larger than all other cases.(2) The synchronous pressure distribution of the breakwater under oblique wave action was more complicated comparing to the normal incident waves.(3) Based on data analysis, an empirical formula was obtained to estimate the total vertical force of the twin-plate breakwater.This empirical formula can be a good reference for the design basis of engineering applications under specified wave conditions.
文摘The compacted soil replacement procedure has been widely used worldwide for overcoming the unfavorable actions of some problematic soils,such as expansive,collapsing soils and ground fill.Compaction of the replacement soil is necessary for stabilizing such layer for improving its performance.In this study,gravelly-sand soil,which consists of gravel,sand and fines,is widely used as replacement soil in the field.The effect of fines content on possibly achieved density of such soil is experimentally investigated.A series of laboratory compaction and plate loading tests were carried out on the replaced soil at different fine contents of 0,5,8,10,12 and 15%.The results showed that,the supporting capacity of a replacement soil increases with the increase of its dry density.Therefore,the density of the replacement layer is the major factor controlling its behavior under the effect if external stresses.Compacted sand and gravelly sand are preferred materials when used for soil replacement.They tend to have better engineering properties,if they are placed according to the standard specifications.Another experimental stage of the effect of fines on the bearing capacity of circular footings on gravelly-sand with different percentages of fines was performed.It was found that a fine content of 10%gives the highest dry density,if the soil is compacted according to modified proctor specifications and with the addition of fines,the footing settlement increases and the ultimate bearing carrying capacity decreases.