The problem considered is an initially stressed viscoelastic cable with small sag. The cable material is assumed to be constituted by the hereditary differential type. The partial differential equations of motion is d...The problem considered is an initially stressed viscoelastic cable with small sag. The cable material is assumed to be constituted by the hereditary differential type. The partial differential equations of motion is derived first. Then by applying Galerkin's method, the governing equations are reduced to a set of third order nonlinear ordinary differential equations which are solved by Runge-Kutta numerical integration procedures. Only after the transverse vibration of the plane is considered and the nonlinear terms are neglected, can the nonlinear ordinary differential equations be expressed as a continuous state equation in the state space. The matrix of state transition is approximated stepwise by the matrix exponential; in addition, the state equation is discretized to a difference equation to improve the computing efficiency. Furthermore, an optimal control of procedure system based on the minimization of a quadratic performance index for state vector and control forces is developed. Finally, the effect of dynamic response of the cable, which is produced by viscoelastic parameters, is testified by the research of digital simulation.展开更多
Kagome based high authority shape morphing structure is a kind of truss-cored sandwich metal plate with a planar Kagome truss as one of its face plane. The planar Kagome truss can achieve arbitrary in-plane nodal disp...Kagome based high authority shape morphing structure is a kind of truss-cored sandwich metal plate with a planar Kagome truss as one of its face plane. The planar Kagome truss can achieve arbitrary in-plane nodal displacements with minimal internal resistance when its rods are deformed. Moreover, the in-plane deflection of the planar Kagome truss may induce the lateral deflection of the whole sandwich plate. In this paper, the feasibility to enhance the damping of the truss-cored sandwich plate through the replacement of a very small portion of rods in the planar Kagome truss by cylindrical viscoelastic dampers is exploited. The Biot model is chosen to simulate the behavior of the viscoelastic material in the dampers, and the fraction of axial modal strain energy of the rods in the planar Kagome truss is adopted as the index to decide the positions of the dampers. Through complex modal analysis and time-domain simulation, it is shown that the passive vibration control approach is very effective for the vibration reduction of this kind of truss-cored sandwich plates.展开更多
In this study,a finite element formulation based on the four-variable refined plate theory(RPT)is presented for forced vibration analysis of laminated viscoelastic composite plates integrated with a piezoelectric laye...In this study,a finite element formulation based on the four-variable refined plate theory(RPT)is presented for forced vibration analysis of laminated viscoelastic composite plates integrated with a piezoelectric layer.To the best of the authors’knowledge,this is the first time that the proposed approach is extended for study of the dynamic behavior of the smart viscoelastic plate.The utilized RPT which works for both thick and thin plates predicts a parabolic variation for transverse shear stresses across the plate thickness.Considering a linear viscoelastic model for the substrate material,the relaxation module is predicted by the Prony series.Using Hamilton’s principle,the weak form equation is constructed and a four-node rectangular plate element is utilized for discretizing the domain.The Newmark scheme is employed for advancing the solution in time.A MATLAB code is developed based on the formulations and several benchmark problems are solved.Comparing the findings with existing results in previous studies confirms the accuracy and efficiency of the proposed method.The dynamic response of the smart viscoelastic plates under various electromechanical loads is investigated and the results show that the.vibration can be passively controlled by adding and actuating the piezoelectric layer.The damping effects of viscoelastic parameters on the results are investigated,too.展开更多
This paper presents an analysis of the active control of random vibration for lami- nated composite plates using piezoelectric fiber reinforced composites (PFRC). With Hamilton's principle and the Rayleigh-Ritz met...This paper presents an analysis of the active control of random vibration for lami- nated composite plates using piezoelectric fiber reinforced composites (PFRC). With Hamilton's principle and the Rayleigh-Ritz method, the equation of motion for the resulting electromechani- cal coupling system is derived. A velocity feedback control rule is employed to obtain an effective active damping in the suppression of random vibration. The power spectral density and mean- square displacements of the random vibration for laminated plates under different control gains are simulated and the validity of the present control strategy is confirmed. The effect of piezoelec- tric fiber orientation in the PFRC layer on the random vibration suppression is also investigated. The analytical methodology can be expanded to other kinds of random vibration.展开更多
Because of the increasing demand for electrical energy,vibration energy harvesters(VEHs)that convert vibratory energy into electrical energy are a promising technology.In order to improve the efficiency of harvesting ...Because of the increasing demand for electrical energy,vibration energy harvesters(VEHs)that convert vibratory energy into electrical energy are a promising technology.In order to improve the efficiency of harvesting energy from environmental vibration,here we investigate a hybrid VEH.Unlike previous studies,this article analyzes the stochastic responses of the hybrid piezoelectric and electromagnetic energy harvesting system with viscoelastic material under narrow-band(colored)noise.Firstly,a mass-spring-damping system model coupled with piezoelectric and electromagnetic circuits under fundamental acceleration excitation is established,and analytical solutions to the dimensionless equations are derived.Then,the formula of the amplitude-frequency responses in the deterministic case and the first-order and secondorder steady-state moments of the amplitude in the stochastic case are obtained by using the multi-scales method.The amplitude-frequency analytical solutions are in good agreement with the numerical solutions obtained by the Monte Carlo method.Furthermore,the stochastic bifurcation diagram is plotted for the first-order steady-state moment of the amplitude with respect to the detuning frequency and viscoelastic parameter.Eventually,the influence of system parameters on mean-square electric voltage,mean-square electric current and mean output power is discussed.Results show that the electromechanical coupling coefficients,random excitation and viscoelastic parameter have a positive effect on the output power of the system.展开更多
针对特殊情况下飞机座舱内部振动噪声过大的实际情况 ,本文对其进行了振动噪声被动控制实验研究。以某飞机座舱模型为研究对象 ,应用粘弹阻尼材料成功实现了一套飞机座舱模型振动噪声被动控制系统。同时利用比利时 L MS国际公司的 Cada-...针对特殊情况下飞机座舱内部振动噪声过大的实际情况 ,本文对其进行了振动噪声被动控制实验研究。以某飞机座舱模型为研究对象 ,应用粘弹阻尼材料成功实现了一套飞机座舱模型振动噪声被动控制系统。同时利用比利时 L MS国际公司的 Cada- X L MS结构动力学分析系统建立了一套完整的振动噪声控制性能测试系统 ,可广泛应用于各种被动、主动控制系统的振动噪声控制性能测试。最后利用该测试系统对上述飞机座舱模型振动噪声被动控制系统进行了控制性能测试实验 ,结果表明控制效果良好 ,说明了此方法可以用于飞机座舱的振动噪声控制。展开更多
文摘The problem considered is an initially stressed viscoelastic cable with small sag. The cable material is assumed to be constituted by the hereditary differential type. The partial differential equations of motion is derived first. Then by applying Galerkin's method, the governing equations are reduced to a set of third order nonlinear ordinary differential equations which are solved by Runge-Kutta numerical integration procedures. Only after the transverse vibration of the plane is considered and the nonlinear terms are neglected, can the nonlinear ordinary differential equations be expressed as a continuous state equation in the state space. The matrix of state transition is approximated stepwise by the matrix exponential; in addition, the state equation is discretized to a difference equation to improve the computing efficiency. Furthermore, an optimal control of procedure system based on the minimization of a quadratic performance index for state vector and control forces is developed. Finally, the effect of dynamic response of the cable, which is produced by viscoelastic parameters, is testified by the research of digital simulation.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2006CB601206)
文摘Kagome based high authority shape morphing structure is a kind of truss-cored sandwich metal plate with a planar Kagome truss as one of its face plane. The planar Kagome truss can achieve arbitrary in-plane nodal displacements with minimal internal resistance when its rods are deformed. Moreover, the in-plane deflection of the planar Kagome truss may induce the lateral deflection of the whole sandwich plate. In this paper, the feasibility to enhance the damping of the truss-cored sandwich plate through the replacement of a very small portion of rods in the planar Kagome truss by cylindrical viscoelastic dampers is exploited. The Biot model is chosen to simulate the behavior of the viscoelastic material in the dampers, and the fraction of axial modal strain energy of the rods in the planar Kagome truss is adopted as the index to decide the positions of the dampers. Through complex modal analysis and time-domain simulation, it is shown that the passive vibration control approach is very effective for the vibration reduction of this kind of truss-cored sandwich plates.
文摘In this study,a finite element formulation based on the four-variable refined plate theory(RPT)is presented for forced vibration analysis of laminated viscoelastic composite plates integrated with a piezoelectric layer.To the best of the authors’knowledge,this is the first time that the proposed approach is extended for study of the dynamic behavior of the smart viscoelastic plate.The utilized RPT which works for both thick and thin plates predicts a parabolic variation for transverse shear stresses across the plate thickness.Considering a linear viscoelastic model for the substrate material,the relaxation module is predicted by the Prony series.Using Hamilton’s principle,the weak form equation is constructed and a four-node rectangular plate element is utilized for discretizing the domain.The Newmark scheme is employed for advancing the solution in time.A MATLAB code is developed based on the formulations and several benchmark problems are solved.Comparing the findings with existing results in previous studies confirms the accuracy and efficiency of the proposed method.The dynamic response of the smart viscoelastic plates under various electromechanical loads is investigated and the results show that the.vibration can be passively controlled by adding and actuating the piezoelectric layer.The damping effects of viscoelastic parameters on the results are investigated,too.
基金Project supported by the National Natural Science Foundation of China(Nos.11502159 and 11390362)Natural Science Foundation of Shanxi(No.2015021014)+4 种基金the Top Young Academic Leaders of High Learning Institutions of ShanxiShanxi Scholarship Council of Chinathe Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Provincethe Scientific Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry
文摘This paper presents an analysis of the active control of random vibration for lami- nated composite plates using piezoelectric fiber reinforced composites (PFRC). With Hamilton's principle and the Rayleigh-Ritz method, the equation of motion for the resulting electromechani- cal coupling system is derived. A velocity feedback control rule is employed to obtain an effective active damping in the suppression of random vibration. The power spectral density and mean- square displacements of the random vibration for laminated plates under different control gains are simulated and the validity of the present control strategy is confirmed. The effect of piezoelec- tric fiber orientation in the PFRC layer on the random vibration suppression is also investigated. The analytical methodology can be expanded to other kinds of random vibration.
基金the National Natural Science Foundation of China(Grant Nos.12002089 and 11902081)the Science and Technology Projects in Guangzhou(Grant Nos.202201010326 and 2023A04J1323)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515010833)。
文摘Because of the increasing demand for electrical energy,vibration energy harvesters(VEHs)that convert vibratory energy into electrical energy are a promising technology.In order to improve the efficiency of harvesting energy from environmental vibration,here we investigate a hybrid VEH.Unlike previous studies,this article analyzes the stochastic responses of the hybrid piezoelectric and electromagnetic energy harvesting system with viscoelastic material under narrow-band(colored)noise.Firstly,a mass-spring-damping system model coupled with piezoelectric and electromagnetic circuits under fundamental acceleration excitation is established,and analytical solutions to the dimensionless equations are derived.Then,the formula of the amplitude-frequency responses in the deterministic case and the first-order and secondorder steady-state moments of the amplitude in the stochastic case are obtained by using the multi-scales method.The amplitude-frequency analytical solutions are in good agreement with the numerical solutions obtained by the Monte Carlo method.Furthermore,the stochastic bifurcation diagram is plotted for the first-order steady-state moment of the amplitude with respect to the detuning frequency and viscoelastic parameter.Eventually,the influence of system parameters on mean-square electric voltage,mean-square electric current and mean output power is discussed.Results show that the electromechanical coupling coefficients,random excitation and viscoelastic parameter have a positive effect on the output power of the system.
文摘针对特殊情况下飞机座舱内部振动噪声过大的实际情况 ,本文对其进行了振动噪声被动控制实验研究。以某飞机座舱模型为研究对象 ,应用粘弹阻尼材料成功实现了一套飞机座舱模型振动噪声被动控制系统。同时利用比利时 L MS国际公司的 Cada- X L MS结构动力学分析系统建立了一套完整的振动噪声控制性能测试系统 ,可广泛应用于各种被动、主动控制系统的振动噪声控制性能测试。最后利用该测试系统对上述飞机座舱模型振动噪声被动控制系统进行了控制性能测试实验 ,结果表明控制效果良好 ,说明了此方法可以用于飞机座舱的振动噪声控制。