Higher requirements for the accuracy of relevant models are put throughout the transformation and upgrade of the iron and steel sector to intelligent production.It has been difficult to meet the needs of the field wit...Higher requirements for the accuracy of relevant models are put throughout the transformation and upgrade of the iron and steel sector to intelligent production.It has been difficult to meet the needs of the field with the usual prediction model of mechanical properties of hotrolled strip.Insufficient data and difficult parameter adjustment limit deep learning models based on multi-layer networks in practical applications;besides,the limited discrete process parameters used make it impossible to effectively depict the actual strip processing process.In order to solve these problems,this research proposed a new sampling approach for mechanical characteristics input data of hot-rolled strip based on the multi-grained cascade forest(gcForest)framework.According to the characteristics of complex process flow and abnormal sensitivity of process path and parameters to product quality in the hot-rolled strip production,a three-dimensional continuous time series process data sampling method based on time-temperature-deformation was designed.The basic information of strip steel(chemical composition and typical process parameters)is fused with the local process information collected by multi-grained scanning,so that the next link’s input has both local and global features.Furthermore,in the multi-grained scanning structure,a sub sampling scheme with a variable window was designed,so that input data with different dimensions can get output characteristics of the same dimension after passing through the multi-grained scanning structure,allowing the cascade forest structure to be trained normally.Finally,actual production data of three steel grades was used to conduct the experimental evaluation.The results revealed that the gcForest-based mechanical property prediction model outperforms the competition in terms of comprehensive performance,ease of parameter adjustment,and ability to sustain high prediction accuracy with fewer samples.展开更多
The types and growth of various oxide scales formed during the different phases of the production of hotrolled strip steel products are reviewed. Similarities and differences between the "tertiary scale" on the surf...The types and growth of various oxide scales formed during the different phases of the production of hotrolled strip steel products are reviewed. Similarities and differences between the "tertiary scale" on the surface of carbon steels at high temperatures and the oxide scale on pure iron are compared. The micro-structural features of the "final oxide scale" on the surface of strip steels at room temperature as well as the relationship between these features and the position of the steel coil (plate) and the subsequent processes of recoiling, temper rolling and trimming, etc. are summarized. The actual oxide scales retained on the commercial hot-rolled strip steels at room temperature have been proposed to define as " quartus scale" for the first time. The micro-structural development and phase transformation of the initial "tertiary scale" during and after cooling and coiling are described. The reasons for the "tertiary scale" on carbon steels differing from the oxide scale formed on pure iron, and the major influencing factors in the formation of various types of "quartus scales" are analyzed from both thermodynamic and dynamic viewpoints. The development mechanism of " quartus scales" is discussed and the potential effects of the " quartus scale" state (thickness, constitution, structure and defects), on the rusting and pickling properties of commercial hot-rolled strip steel, as well as on the mechanical properties of oxide scales are analyzed.展开更多
Double self-adaptive fuzzy PID algorithm-based control strategy was proposed to construct quasi-cascade control system to control the speed of the acid-pickling process of titanium plates and strips. It is very useful...Double self-adaptive fuzzy PID algorithm-based control strategy was proposed to construct quasi-cascade control system to control the speed of the acid-pickling process of titanium plates and strips. It is very useful in overcoming non-linear dynamic behavior, uncertain and time-varying parameters, un-modeled dynamics, and couples between the automatic turbulence control (ATC) and the automatic acid temperature control (AATC) with varying parameters during the operation process. The quasi-cascade control system of inner and outer loop self-adaptive fuzzy PID controller was built, which could effectively control the pickling speed of plates and strips. The simulated results and real application indicate that the plates and strips acid pickling speed control system has good performances of adaptively tracking the parameter variations and anti-disturbances, which ensures the match of acid pickling temperature and turbulence of flowing with acid pickling speed, improving the surface quality of plates and strips acid pickling, and energy efficiency.展开更多
Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constru...Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constructed.The ultimate pull-out force and its corresponding failure mechanism through the upper bound limit analysis according to a variation principle are deduced.When the 2-layer overlying soil is degraded into single-layer soil,the model of ultimate pullout force could also be degraded into the model of single-layer soil.And the comparison between results of single-layer soil variation method and those calculated by rigid limit analysis method proves the correctness of our method.Based on that,the influence of changes of geotechnical parameters on ultimate pullout forces and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are analyzed.The results show that the ultimate pull-out force and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are affected by the nonlinear geotechnical parameters greatly.Thus,it is very important to obtain the accurate geotechnical parameters of 2-layer soil for the evaluation of the ultimate pullout capacity of the anchor plate.展开更多
Wear-resistant cladding plates consisting of a substrate(Q345 R) and a clad layer(BTW1) were bonded through hot rolling at the temperature of 1 200 ℃ and a rolling speed of 0.5 m/s. The microhardness of the cladd...Wear-resistant cladding plates consisting of a substrate(Q345 R) and a clad layer(BTW1) were bonded through hot rolling at the temperature of 1 200 ℃ and a rolling speed of 0.5 m/s. The microhardness of the cladding plate was also tested after being heat treated. The microstructure evolution on the interface of BTW1/Q345 R sheets under various reduction rates was investigated with a scanning electron microscope(SEM) and EBSD. It is found that the micro-cracks and oxide films on the interface disappear when the reduction is 80%, whereas the maximum uniform diffusion distance reaches 10 μm. As a result, a wide range of metallurgical bonding layers forms, which indicates an improved combination between the BTW1 and the Q345 R. Additionally, it is discovered that the unbroken oxide films on the interface are composed of Mn, Si or Cr at the reductions of 50% and 65%. The SEM fractography of tensile specimen demonstrates that the BTW1 has significant dimple characteristics and possesses lower-sized dimples with the increment in reduction, suggesting that the toughness and bonding strength of the cladding plates would be improved by the increase of reduction. The results reveal that a high rolling reduction causes the interfacial oxide film broken and further forms a higher-sized composite metallurgical bonding interface. The peak microhardness is achieved near the interface.展开更多
Hot-rolled wide strip for production of large diameter,heavy gauged(up to 19 mm) helical line pipe grade X80 was a priority development over the last three years.Microstructure,texture and mechanical properties of str...Hot-rolled wide strip for production of large diameter,heavy gauged(up to 19 mm) helical line pipe grade X80 was a priority development over the last three years.Microstructure,texture and mechanical properties of strips have been characterised.Also the welding conditions have been simulated.The favourable microstructure is achieved by the proper selection of an appropriate chemical composition of low carbon content and increased niobium micro alloying in combination with suitable strictly controlled hot-rolling parameters.The addition of niobium in combination with the adjustment of other alloying elements increases the recrystallisation stop temperature and thus makes it possible to apply a high temperature processing(HTP) concept.The homogeneous bainitic microstructure across the strip gauge is then formed during accelerated cooling on the run-out table of the hot-rolling mill.All results indicated excellent properties of these hot strips which make it suitable for spiral pipes of grade X80 for example 18.9mm×Φ1 220 mm at dimension.展开更多
As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufact...As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufacturing, transportation and/or storage of the plates. General corrosion often takes place on the surface of a plate in the exterior part of a package, and only reduces the thickness of the plate and slightly increases the roughness of the surface; however, localized corrosion on the surface of a plate inside the package is likely to result in the formation of pit-like defects on the substrate of the plate, which cannot be removed thoroughly by normal acid pickling or sand blasting, and affects the application of the plate. This research report analyzes the phenomena and characteristics of the rusting behavior of hot- rolled steel plates for automobile applications, and the influencing factors are summaried. The corresponding preventative measures are proposed.展开更多
Dynamic response of beam-like structures to moving vehicles has been extensively studied. However, the study on dynamic response of plates to moving vehicles has so far received but scant attention. A plate-vehicle st...Dynamic response of beam-like structures to moving vehicles has been extensively studied. However, the study on dynamic response of plates to moving vehicles has so far received but scant attention. A plate-vehicle strip for simulating the interaction between a rectangular plate and moving vehicles was described. For the portion of strips that are in direct contact with the moving vehicles, the plate-vehicle strips were employed. Conventional plate finite strips were used to model the portion of strips that are not directly under the action of moving vehicles. In the analysis, each moving vehicle is idealized as a one-foot dynamic system with tire unsprung mass and sprund mass interconnected by a spring and a dashpot. The numerical results obtained from the proposed method agree well with available results.展开更多
The Steckel mill,a long established solution for the economical production of relatively small volumes of hot rolled strip,has been rejuvenated in recent years by a range of new applications,boosted by the need of imp...The Steckel mill,a long established solution for the economical production of relatively small volumes of hot rolled strip,has been rejuvenated in recent years by a range of new applications,boosted by the need of improving the energetic efficiency of the rolling process.The traditional advantages of the Steckel mill in terms of flexibility and reduced capital and operational costs are now enhanced by technological developments that have significantly expanded its application range into the combined production of strip and plate and improved the product quality.The increased awareness of the necessity of a sustainable growth in the steel industry has stimulated the development of process solutions with an improved efficiency in the use of natural resources,lower carbon emissions and increased yield.Modern Steckel mills are an adequate response to the trend towards low energy strip and plate production,in particular in their plate-Steckel mill variant.Siemens VAI have played a key role in the innovation and transformation of the Steckel mill concept,with a number of recent installations,presented in this paper from the point of view of their contribution to the development of greener steel rolling technologies.展开更多
In this study, the matrix structure, state and composition of the mill scales of four typical domestically made 510L hot-rolled strips were observed and analyzed by means of optical microscopy (OM) ,scanning electro...In this study, the matrix structure, state and composition of the mill scales of four typical domestically made 510L hot-rolled strips were observed and analyzed by means of optical microscopy (OM) ,scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior of the steels with and without mill scales were investigated by means of hot-humid corrosion tests under the condition of relative humidity ( RH ) of 95% at 50℃ and 70℃, respectively. The results show that the matrix structures, state, composition and thickness of mill scales vary in the strips. The rusting starting time of the specimens with scales is generally a bit longer than that of the specimens without scales, but their corrosion mass-gain is higher. For these two kinds of specimens ,their corrosion rate increases significantly with the increase of temperature. The rusting behavior of the 510L strips produced by various plants is different due to the variations of hot-rolling processes and designed chemical compositions. Various relevant aspects should be taken into account in the evaluation of the corrosion behavior of hot-rolled strips.展开更多
To overcome the inaccuracy problem of the traditional wedge evaluation of steel plates and strips caused by the ran-domness of the thicknesses of two local points and improve the reliability of the wedge index,the dou...To overcome the inaccuracy problem of the traditional wedge evaluation of steel plates and strips caused by the ran-domness of the thicknesses of two local points and improve the reliability of the wedge index,the double-centroid method for the wedge evaluation was proposed,and a model based on the centroid theory was established.Meanwhile,an integral model for the discrete thickness values of the cross-section profiles was derived.The discussion focused on the distinct characteristics of the two-point method,asymmetric method,and double-centroid method in evaluating the asymmetric distribution of cross-sections.The three methods were employed to evaluate the wedge values of both the theoretical and measured cross-sections of steel plates and strips,and the accuracies of three wedge evaluation models were analyzed and discussed.The results showed that the double-centroid method objectively reflects the degree and variation characteristics of the wedge values of the cross-sections of steel plates and strips,and this method is feasible,reliable,and outstanding.展开更多
Lithium metal battery has great development potential because of its lowest electrochemical potential and highest theoretical capacity.However,the uneven deposition of Li^(+)flux in the process of deposition and strip...Lithium metal battery has great development potential because of its lowest electrochemical potential and highest theoretical capacity.However,the uneven deposition of Li^(+)flux in the process of deposition and stripping induces the vigorous growth of lithium dendrites,which results in severely battery performance degradation and serious safety hazards.Here,the tetragonal BaTiO3 polarized by high voltage corona was used to build an artificial protective layer with uniform positive polarization direction,which enables uniform Li^(+)flux.In contrast to traditional strategies of using protective layer,which can guide the uniform deposition of lithium metal.The ferroelectric protective layer can accurately anchor the Li^(+)and achieve bottom deposition of lithium due to the automatic adjustment of the electric field.Simultaneously,the huge volume changes caused by Li^(+)migration change of the lithium metal anode during charging and discharging is functioned to excite the piezoelectric effect of the protective layer,and achieve seamless dynamic tuning of lithium deposition/stripping.This dynamic effect can accurately anchor and capture Li^(+).Finally,the layer-modified Li anode enables reversible Li plating/stripping over 1500 h at 1 mA cm^(-2)and 50℃in symmetric cells.In addition,the assembled Li-S full cell exhibits over 300 cycles with N/P≈1.35.This work provides a new perspective on the uniform Li^(+)flux at the Li-anode interface of the artificial protective layer.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52004029)the Fundamental Research Funds for the Central Universities,China(No.FRF-TT-20-06).
文摘Higher requirements for the accuracy of relevant models are put throughout the transformation and upgrade of the iron and steel sector to intelligent production.It has been difficult to meet the needs of the field with the usual prediction model of mechanical properties of hotrolled strip.Insufficient data and difficult parameter adjustment limit deep learning models based on multi-layer networks in practical applications;besides,the limited discrete process parameters used make it impossible to effectively depict the actual strip processing process.In order to solve these problems,this research proposed a new sampling approach for mechanical characteristics input data of hot-rolled strip based on the multi-grained cascade forest(gcForest)framework.According to the characteristics of complex process flow and abnormal sensitivity of process path and parameters to product quality in the hot-rolled strip production,a three-dimensional continuous time series process data sampling method based on time-temperature-deformation was designed.The basic information of strip steel(chemical composition and typical process parameters)is fused with the local process information collected by multi-grained scanning,so that the next link’s input has both local and global features.Furthermore,in the multi-grained scanning structure,a sub sampling scheme with a variable window was designed,so that input data with different dimensions can get output characteristics of the same dimension after passing through the multi-grained scanning structure,allowing the cascade forest structure to be trained normally.Finally,actual production data of three steel grades was used to conduct the experimental evaluation.The results revealed that the gcForest-based mechanical property prediction model outperforms the competition in terms of comprehensive performance,ease of parameter adjustment,and ability to sustain high prediction accuracy with fewer samples.
文摘The types and growth of various oxide scales formed during the different phases of the production of hotrolled strip steel products are reviewed. Similarities and differences between the "tertiary scale" on the surface of carbon steels at high temperatures and the oxide scale on pure iron are compared. The micro-structural features of the "final oxide scale" on the surface of strip steels at room temperature as well as the relationship between these features and the position of the steel coil (plate) and the subsequent processes of recoiling, temper rolling and trimming, etc. are summarized. The actual oxide scales retained on the commercial hot-rolled strip steels at room temperature have been proposed to define as " quartus scale" for the first time. The micro-structural development and phase transformation of the initial "tertiary scale" during and after cooling and coiling are described. The reasons for the "tertiary scale" on carbon steels differing from the oxide scale formed on pure iron, and the major influencing factors in the formation of various types of "quartus scales" are analyzed from both thermodynamic and dynamic viewpoints. The development mechanism of " quartus scales" is discussed and the potential effects of the " quartus scale" state (thickness, constitution, structure and defects), on the rusting and pickling properties of commercial hot-rolled strip steel, as well as on the mechanical properties of oxide scales are analyzed.
基金Project(51090385) supported by the National Natural Science Foundation of ChinaProject(2001IB001) supported by Yunnan Provincial Science and Technology Fund, China
文摘Double self-adaptive fuzzy PID algorithm-based control strategy was proposed to construct quasi-cascade control system to control the speed of the acid-pickling process of titanium plates and strips. It is very useful in overcoming non-linear dynamic behavior, uncertain and time-varying parameters, un-modeled dynamics, and couples between the automatic turbulence control (ATC) and the automatic acid temperature control (AATC) with varying parameters during the operation process. The quasi-cascade control system of inner and outer loop self-adaptive fuzzy PID controller was built, which could effectively control the pickling speed of plates and strips. The simulated results and real application indicate that the plates and strips acid pickling speed control system has good performances of adaptively tracking the parameter variations and anti-disturbances, which ensures the match of acid pickling temperature and turbulence of flowing with acid pickling speed, improving the surface quality of plates and strips acid pickling, and energy efficiency.
基金Project (51478477) supported by the National Natural Science Foundation of ChinaProject (2016CX012) supported by the Innovation-Driven Project of Central South University,ChinaProject (2014122006) supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constructed.The ultimate pull-out force and its corresponding failure mechanism through the upper bound limit analysis according to a variation principle are deduced.When the 2-layer overlying soil is degraded into single-layer soil,the model of ultimate pullout force could also be degraded into the model of single-layer soil.And the comparison between results of single-layer soil variation method and those calculated by rigid limit analysis method proves the correctness of our method.Based on that,the influence of changes of geotechnical parameters on ultimate pullout forces and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are analyzed.The results show that the ultimate pull-out force and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are affected by the nonlinear geotechnical parameters greatly.Thus,it is very important to obtain the accurate geotechnical parameters of 2-layer soil for the evaluation of the ultimate pullout capacity of the anchor plate.
基金the National Natural Science Foundation of China(No.U151013)the Key Research and Development Program of Shanxi Province(Nos.201603D111004 and 201603D121010)+1 种基金the Natural Science Foundation of Shanxi Province of Chinathe Provincial Special Fund for Coordinative Innovation Center of Taiyuan Heavy Machinery Equipmen(No.20171003)
文摘Wear-resistant cladding plates consisting of a substrate(Q345 R) and a clad layer(BTW1) were bonded through hot rolling at the temperature of 1 200 ℃ and a rolling speed of 0.5 m/s. The microhardness of the cladding plate was also tested after being heat treated. The microstructure evolution on the interface of BTW1/Q345 R sheets under various reduction rates was investigated with a scanning electron microscope(SEM) and EBSD. It is found that the micro-cracks and oxide films on the interface disappear when the reduction is 80%, whereas the maximum uniform diffusion distance reaches 10 μm. As a result, a wide range of metallurgical bonding layers forms, which indicates an improved combination between the BTW1 and the Q345 R. Additionally, it is discovered that the unbroken oxide films on the interface are composed of Mn, Si or Cr at the reductions of 50% and 65%. The SEM fractography of tensile specimen demonstrates that the BTW1 has significant dimple characteristics and possesses lower-sized dimples with the increment in reduction, suggesting that the toughness and bonding strength of the cladding plates would be improved by the increase of reduction. The results reveal that a high rolling reduction causes the interfacial oxide film broken and further forms a higher-sized composite metallurgical bonding interface. The peak microhardness is achieved near the interface.
文摘Hot-rolled wide strip for production of large diameter,heavy gauged(up to 19 mm) helical line pipe grade X80 was a priority development over the last three years.Microstructure,texture and mechanical properties of strips have been characterised.Also the welding conditions have been simulated.The favourable microstructure is achieved by the proper selection of an appropriate chemical composition of low carbon content and increased niobium micro alloying in combination with suitable strictly controlled hot-rolling parameters.The addition of niobium in combination with the adjustment of other alloying elements increases the recrystallisation stop temperature and thus makes it possible to apply a high temperature processing(HTP) concept.The homogeneous bainitic microstructure across the strip gauge is then formed during accelerated cooling on the run-out table of the hot-rolling mill.All results indicated excellent properties of these hot strips which make it suitable for spiral pipes of grade X80 for example 18.9mm×Φ1 220 mm at dimension.
文摘As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufacturing, transportation and/or storage of the plates. General corrosion often takes place on the surface of a plate in the exterior part of a package, and only reduces the thickness of the plate and slightly increases the roughness of the surface; however, localized corrosion on the surface of a plate inside the package is likely to result in the formation of pit-like defects on the substrate of the plate, which cannot be removed thoroughly by normal acid pickling or sand blasting, and affects the application of the plate. This research report analyzes the phenomena and characteristics of the rusting behavior of hot- rolled steel plates for automobile applications, and the influencing factors are summaried. The corresponding preventative measures are proposed.
文摘Dynamic response of beam-like structures to moving vehicles has been extensively studied. However, the study on dynamic response of plates to moving vehicles has so far received but scant attention. A plate-vehicle strip for simulating the interaction between a rectangular plate and moving vehicles was described. For the portion of strips that are in direct contact with the moving vehicles, the plate-vehicle strips were employed. Conventional plate finite strips were used to model the portion of strips that are not directly under the action of moving vehicles. In the analysis, each moving vehicle is idealized as a one-foot dynamic system with tire unsprung mass and sprund mass interconnected by a spring and a dashpot. The numerical results obtained from the proposed method agree well with available results.
文摘The Steckel mill,a long established solution for the economical production of relatively small volumes of hot rolled strip,has been rejuvenated in recent years by a range of new applications,boosted by the need of improving the energetic efficiency of the rolling process.The traditional advantages of the Steckel mill in terms of flexibility and reduced capital and operational costs are now enhanced by technological developments that have significantly expanded its application range into the combined production of strip and plate and improved the product quality.The increased awareness of the necessity of a sustainable growth in the steel industry has stimulated the development of process solutions with an improved efficiency in the use of natural resources,lower carbon emissions and increased yield.Modern Steckel mills are an adequate response to the trend towards low energy strip and plate production,in particular in their plate-Steckel mill variant.Siemens VAI have played a key role in the innovation and transformation of the Steckel mill concept,with a number of recent installations,presented in this paper from the point of view of their contribution to the development of greener steel rolling technologies.
文摘In this study, the matrix structure, state and composition of the mill scales of four typical domestically made 510L hot-rolled strips were observed and analyzed by means of optical microscopy (OM) ,scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior of the steels with and without mill scales were investigated by means of hot-humid corrosion tests under the condition of relative humidity ( RH ) of 95% at 50℃ and 70℃, respectively. The results show that the matrix structures, state, composition and thickness of mill scales vary in the strips. The rusting starting time of the specimens with scales is generally a bit longer than that of the specimens without scales, but their corrosion mass-gain is higher. For these two kinds of specimens ,their corrosion rate increases significantly with the increase of temperature. The rusting behavior of the 510L strips produced by various plants is different due to the variations of hot-rolling processes and designed chemical compositions. Various relevant aspects should be taken into account in the evaluation of the corrosion behavior of hot-rolled strips.
基金supported by the National Natural Science Foundation of China (Grant No.52305405)the Natural Science Foundation Research Program of Shanxi Province (Grant No.202203021222121)+4 种基金the Major Project of Science and Technology of Shanxi Province (Grant No.20181102016)the Chinese Postdoctoral Science Foundation (Grant No.2021M702544)the Central Government Guides the Special Fund Projects of Local Scientific and Technological Development (YDZX20191400002149)the Open Project of Research Institute of Hai'an-Taiyuan University of Technology (Grant No.2023HA-TYUTKFYF008)the School Fund of Taiyuan University of Technology (Grant No.2022QN007).
文摘To overcome the inaccuracy problem of the traditional wedge evaluation of steel plates and strips caused by the ran-domness of the thicknesses of two local points and improve the reliability of the wedge index,the double-centroid method for the wedge evaluation was proposed,and a model based on the centroid theory was established.Meanwhile,an integral model for the discrete thickness values of the cross-section profiles was derived.The discussion focused on the distinct characteristics of the two-point method,asymmetric method,and double-centroid method in evaluating the asymmetric distribution of cross-sections.The three methods were employed to evaluate the wedge values of both the theoretical and measured cross-sections of steel plates and strips,and the accuracies of three wedge evaluation models were analyzed and discussed.The results showed that the double-centroid method objectively reflects the degree and variation characteristics of the wedge values of the cross-sections of steel plates and strips,and this method is feasible,reliable,and outstanding.
基金supported by projects from the National Natural Science Foundation of China[20A20145,21878195,21805198]the Distinguished Young Foundation of Sichuan Province[2020JDJQ0027]+5 种基金the 2020 Strategic Cooperation Project between Sichuan University and the Zigong Municipal Peoples Government[No.2020CDZG-09]State Key Laboratory of Polymer Materials Engineering[No.2020-3-02]Sichuan Provincial Department of Science and Technology[No.2020YFG0471,No.2020YFG0022,No.2022YFG0124]the Sichuan Province Science and Technology Achievement Transfer and Transformation Project[No21ZHSF0111]the Sichuan University Postdoctoral Interdisciplinary Innovation Fund[2021SCU12084]Start-up funding of Chemistry and Chemical Engineering Guangdong Laboratory[No.2122010]
文摘Lithium metal battery has great development potential because of its lowest electrochemical potential and highest theoretical capacity.However,the uneven deposition of Li^(+)flux in the process of deposition and stripping induces the vigorous growth of lithium dendrites,which results in severely battery performance degradation and serious safety hazards.Here,the tetragonal BaTiO3 polarized by high voltage corona was used to build an artificial protective layer with uniform positive polarization direction,which enables uniform Li^(+)flux.In contrast to traditional strategies of using protective layer,which can guide the uniform deposition of lithium metal.The ferroelectric protective layer can accurately anchor the Li^(+)and achieve bottom deposition of lithium due to the automatic adjustment of the electric field.Simultaneously,the huge volume changes caused by Li^(+)migration change of the lithium metal anode during charging and discharging is functioned to excite the piezoelectric effect of the protective layer,and achieve seamless dynamic tuning of lithium deposition/stripping.This dynamic effect can accurately anchor and capture Li^(+).Finally,the layer-modified Li anode enables reversible Li plating/stripping over 1500 h at 1 mA cm^(-2)and 50℃in symmetric cells.In addition,the assembled Li-S full cell exhibits over 300 cycles with N/P≈1.35.This work provides a new perspective on the uniform Li^(+)flux at the Li-anode interface of the artificial protective layer.