Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new model...Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new models are less sensitive to mesh distortion. In this paper, a new displacement-based, 4-node 20-DOF (5-DOF per node) quadrilateral bending element based on the first-order shear deformation theory for analysis of arbitrary laminated composite plates is presented. Its bending part is based on the element AC-MQ4, a recent-developed high-performance Mindlin-Reissner plate element formulated by QAC method and the generalized conforming condition method; and its in-plane displacement fields are interpolated by bilinear shape functions in isoparametric coordinates. Furthermore, the hybrid post-rocessing procedure, which was firstly proposed by the authors, is employed again to improve the stress solutions, especially for the transverse shear stresses. The resulting element, denoted as AC-MQ4-LC, exhibits excellent performance in all linear static and dynamic numerical examples. It demonstrates again that the QAC method, the generalized conforming condition method, and the hybrid post-processing procedure are efficient tools for developing simple, effective and reliable finite element models.展开更多
Isopaxametric quadrilateral elements are widely used in the finite element method. However, they have a disadvantage of accuracy loss when elements are distorted. Spline functions have properties of simpleness and con...Isopaxametric quadrilateral elements are widely used in the finite element method. However, they have a disadvantage of accuracy loss when elements are distorted. Spline functions have properties of simpleness and conformality. A 17onode quadrilateral element has been developed using the bivaxiate quaxtic spline interpolation basis and the triangular area coordinates, which can exactly model the quartic displacement fields. Some appropriate examples are employed to illustrate that the element possesses high precision and is insensitive to mesh distortions.展开更多
A new 4-node quadrilateral flat shell element is developed for geometrically nonlinear analyses of thin and moderately thick laminated shell structures. The fiat shell element is constructed by combining a quadrilater...A new 4-node quadrilateral flat shell element is developed for geometrically nonlinear analyses of thin and moderately thick laminated shell structures. The fiat shell element is constructed by combining a quadrilateral area co- ordinate method (QAC) based membrane element AGQ6- II, and a Timoshenko beam function (TBF) method based shear deformable plate bending element ARS-Q12. In order to model folded plates and connect with beam elements, the drilling stiffness is added to the element stiffness matrix based on the mixed variational principle. The transverse shear rigidity matrix, based on the first-order shear deformation theory (FSDT), for the laminated composite plate is evaluated using the transverse equilibrium conditions, while the shear correction factors are not needed. The conventional TBF methods are also modified to efficiently calculate the element stiffness for laminate. The new shell element is extended to large deflection and post-buckling analyses of isotropic and laminated composite shells based on the element independent corotational formulation. Numerical re- sults show that the present shell element has an excellent numerical performance for the test examples, and is applicable to stiffened plates.展开更多
Accuracy of a simulation strongly depends on the grid quality. Here, quality means orthogonality at the boundaries and quasi-orthogonality within the critical regions, smoothness, bounded aspect ratios and solution ad...Accuracy of a simulation strongly depends on the grid quality. Here, quality means orthogonality at the boundaries and quasi-orthogonality within the critical regions, smoothness, bounded aspect ratios and solution adaptive behaviour. It is not recommended to refine the parts of the domain where the solution shows little variation. It is desired to concentrate grid points and cells in the part of the domain where the solution shows strong gradients or variations. We present a simple, effective and com- putationally efficient approach for quadrilateral mesh adaptation. Several numerical examples are presented for supporting our claim.展开更多
基金The project is supported by the National Natural Science Foundation of China(10502028)the Special Foundation for the Authors of the Nationwide(China)Excellent Doctoral Dissertation(200242)the Science Research Foundation of China Agricultural University(2004016).
文摘Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new models are less sensitive to mesh distortion. In this paper, a new displacement-based, 4-node 20-DOF (5-DOF per node) quadrilateral bending element based on the first-order shear deformation theory for analysis of arbitrary laminated composite plates is presented. Its bending part is based on the element AC-MQ4, a recent-developed high-performance Mindlin-Reissner plate element formulated by QAC method and the generalized conforming condition method; and its in-plane displacement fields are interpolated by bilinear shape functions in isoparametric coordinates. Furthermore, the hybrid post-rocessing procedure, which was firstly proposed by the authors, is employed again to improve the stress solutions, especially for the transverse shear stresses. The resulting element, denoted as AC-MQ4-LC, exhibits excellent performance in all linear static and dynamic numerical examples. It demonstrates again that the QAC method, the generalized conforming condition method, and the hybrid post-processing procedure are efficient tools for developing simple, effective and reliable finite element models.
基金supported by the Natural Science Foundation of China China (Nos. 60533060, 10672032, and 10726067)the Science Foundation of Dalian University of Technology (No. SFDUT07001)
文摘Isopaxametric quadrilateral elements are widely used in the finite element method. However, they have a disadvantage of accuracy loss when elements are distorted. Spline functions have properties of simpleness and conformality. A 17onode quadrilateral element has been developed using the bivaxiate quaxtic spline interpolation basis and the triangular area coordinates, which can exactly model the quartic displacement fields. Some appropriate examples are employed to illustrate that the element possesses high precision and is insensitive to mesh distortions.
文摘A new 4-node quadrilateral flat shell element is developed for geometrically nonlinear analyses of thin and moderately thick laminated shell structures. The fiat shell element is constructed by combining a quadrilateral area co- ordinate method (QAC) based membrane element AGQ6- II, and a Timoshenko beam function (TBF) method based shear deformable plate bending element ARS-Q12. In order to model folded plates and connect with beam elements, the drilling stiffness is added to the element stiffness matrix based on the mixed variational principle. The transverse shear rigidity matrix, based on the first-order shear deformation theory (FSDT), for the laminated composite plate is evaluated using the transverse equilibrium conditions, while the shear correction factors are not needed. The conventional TBF methods are also modified to efficiently calculate the element stiffness for laminate. The new shell element is extended to large deflection and post-buckling analyses of isotropic and laminated composite shells based on the element independent corotational formulation. Numerical re- sults show that the present shell element has an excellent numerical performance for the test examples, and is applicable to stiffened plates.
文摘Accuracy of a simulation strongly depends on the grid quality. Here, quality means orthogonality at the boundaries and quasi-orthogonality within the critical regions, smoothness, bounded aspect ratios and solution adaptive behaviour. It is not recommended to refine the parts of the domain where the solution shows little variation. It is desired to concentrate grid points and cells in the part of the domain where the solution shows strong gradients or variations. We present a simple, effective and com- putationally efficient approach for quadrilateral mesh adaptation. Several numerical examples are presented for supporting our claim.