The source area of the Yellow River is located in the northeastern Tibetan Plateau, and is a high-elevation region with the annual mean temperature of -3.9℃. The ice-wedge pseudomorphs discovered in this region are r...The source area of the Yellow River is located in the northeastern Tibetan Plateau, and is a high-elevation region with the annual mean temperature of -3.9℃. The ice-wedge pseudomorphs discovered in this region are recognized as two types. One was found in sandy gravel beds of the second terrace of the Yellow River. This ice-wedge pseudomorph is characterized by higher ratio of breadth/depth, and are 1-1.4 m wide and about 1 m deep. The bottom border of the ice-wedge pseudomorph is round arc in section. Another discovered in the pedestal of the second terrace has lower ratio of width/depth, and is o.3-1.0 m wide and 1-2 m deep. Its bottom border is sharp. Based on the TL dating, the former was formed at the middleHolocene (5.69±0.43 ka BP and 5.43±0.41 ka BP), that is, the Megathermal, and the latter was formed at the late Last Glacial Maximum (13.49±1.43 ka BP). Additionally, the thawing-freezing folders discovered in the late Late Pleistocene proluvium are 39.83±3.84 ka BP in age. The study on the ice-wedge pseudomorphs showed that the air temperature was lowered by up to 6-7℃ in the source area of the Yellow River when the ice-wedge pseudomorphs and thawing-freezing folds developed.展开更多
The ground ice content in permafrost serves as one of the dominant properties of permafrost for the study of global climate change, ecology, hydrology and engineering construction in cold regions. This paper initially...The ground ice content in permafrost serves as one of the dominant properties of permafrost for the study of global climate change, ecology, hydrology and engineering construction in cold regions. This paper initially attempts to assess the ground ice volume in permafrost layers on the Qinghai-Tibet Plateau by considering landform types, the corresponding lithological composition, and the measured water content in various regions. An approximation demonstrating the existence of many similarities in lithological composition and water content within a unified landform was established during the calculations. Considerable knowledge of the case study area, here called the Source Area of the Yellow(Huanghe) River(SAYR) in the northeastern Qinghai-Tibet Plateau, has been accumulated related to permafrost and fresh water resources during the past 40 years. Considering the permafrost distribution, extent, spatial distribution of landform types, the ground ice volume at the depths of 3.0–10.0 m below the ground surface was estimated based on the data of 101 boreholes from field observations and geological surveys in different types of landforms in the permafrost region of the SAYR. The total ground ice volume in permafrost layers at the depths of 3.0–10.0 m was approximately(51.68 ± 18.81) km^3, and the ground ice volume per unit volume was(0.31 ± 0.11) m^3/m^3. In the horizontal direction, the ground ice content was higher in the landforms of lacustrine-marshland plains and alluvial-lacustrine plains, and the lower ground ice content was distributed in the erosional platforms and alluvial-proluvial plains. In the vertical direction, the volume of ground ice was relatively high in the top layers(especially near the permafrost table) and at the depths of 7.0–8.0 m. This calculation method will be used in the other areas when the necessary information is available, including landform type, borehole data, and measured water content.展开更多
In the north-eastern Qinghai-Tibet Plateau(QTP),the source area of the Yellow River(SAYR)has been experiencing significant changes in climatic and environmental conditions in recent decades.To date,few studies have co...In the north-eastern Qinghai-Tibet Plateau(QTP),the source area of the Yellow River(SAYR)has been experiencing significant changes in climatic and environmental conditions in recent decades.To date,few studies have combined modern hydrological conditions with paleoclimate records to explore the mechanism(s)of these changes.This study seeks to improve understanding of hydrological variability on decadal and centennial timescales in the SAYR and to identify its general cause.We first determined annual fluctuations in the surface area of Lake Ngoring from 1985 to 2020 using multi-temporal Landsat images.The results show that lake surface area changes were generally consistent with variations in precipitation,streamflow and the regional dry-wet index in the SAYR,suggesting that the water balance of the Lake Ngoring area is closely associated with regional hydroclimate changes.These records are also comparable to the stalagmite δ^(18)O monsoon record,as well fluctuations in the Southern Oscillation Index(SOI).Moreover,an association of high TSI(total solar insolation)anomalies and sunspot numbers with the expansion of Lake Ngoring surface area is observed,implying that solar activity is the key driving factor for hydrologic variability in the SAYR on a decadal timescale.Following this line of reasoning,we compared the δ^(13)C org-based lake level fluctuations of Lake Ngoring for the last millennium,as previously reported,with the hydroclimatic history and the reconstructed TSI record.We conclude that the hydrological regime of Lake Ngoring has been mainly controlled by centennial fluctuations in precipitation for the last millennium,which is also dominated by solar activity.In general,it appears that solar activity has exerted a dominant influence on the hydrological regime of the SAYR on both decadal and centennial timescales,which is clearly manifested in the variations of lake area and water level of Lake Ngoring.展开更多
During the years 2006–2009,lakes in the Qinghai-Tibetan Plateau(QTP)were investigated using satellite remote sensing strategies.We report the results of this investigation as well as follow-up research and expanded w...During the years 2006–2009,lakes in the Qinghai-Tibetan Plateau(QTP)were investigated using satellite remote sensing strategies.We report the results of this investigation as well as follow-up research and expanded work.For the investigation,we mainly focused on lakes whose areas are more than 1 km2.The remote sensing data that we used included 408 scenes of CBERS CCD images and 5 scenes of Landsat ETM?images in Qinghai Province and Tibet Autonomous Region.All these data were acquired around years 2005–2006.Besides remote sensing images,we also collected 1,259 topographic maps.Numbers and areas of lakes were analyzed statistically,which were then compared with those coming from the first lake investigation(implemented between the1960s and 1980s).According to our investigation,up to and around year 2005–2006,the total number of lakes in the QTP was 1,055(222 in Qinghai and 833 in Tibet),accounting for more than 30%of that of China.Thirty newborn lakes with area[1 km2were found,and 5 dead lakes with initial area[1 km2were also found.Among those 13 big lakes([500 km2),Yamzhog Yumco had seriously shrunk,and it has continued to shrink in recent years;Qinghai Lake had shrunk during the period,but some new researches indicated that it has been expanding since the year 2004;Siling Co,Nam Co,and Chibuzhang Co had expanded in the period.We divided the newborn lakes into six categories according to their forming reasons,including river expansion,wetland conversion,etc.The changes of natural conditions led to the death of four lakes,and human exploitation was the main reason for the death of Dalianhai Lake in Qinghai.We picked out three regions which were sensitive to the change of climate and ecological environment:Nagqu Region,Kekexili Region,and the source area of the Yellow River(SAYR).Lakes in both Nagqu and Kekexili have been expanded;meanwhile,most lakes in the SAYR have obviously been shrunk.These regional patterns of lake changes were highly related to variations of temperature,glacier,precipitation,and evaporation.Our investigation and analysis will provide references for researches related to lake changes in the QTP and the response to climate fluctuations.展开更多
基金the Ministry of Land and Resource of P.R.China the National Natural Science Foundation of China(No.40172062).
文摘The source area of the Yellow River is located in the northeastern Tibetan Plateau, and is a high-elevation region with the annual mean temperature of -3.9℃. The ice-wedge pseudomorphs discovered in this region are recognized as two types. One was found in sandy gravel beds of the second terrace of the Yellow River. This ice-wedge pseudomorph is characterized by higher ratio of breadth/depth, and are 1-1.4 m wide and about 1 m deep. The bottom border of the ice-wedge pseudomorph is round arc in section. Another discovered in the pedestal of the second terrace has lower ratio of width/depth, and is o.3-1.0 m wide and 1-2 m deep. Its bottom border is sharp. Based on the TL dating, the former was formed at the middleHolocene (5.69±0.43 ka BP and 5.43±0.41 ka BP), that is, the Megathermal, and the latter was formed at the late Last Glacial Maximum (13.49±1.43 ka BP). Additionally, the thawing-freezing folders discovered in the late Late Pleistocene proluvium are 39.83±3.84 ka BP in age. The study on the ice-wedge pseudomorphs showed that the air temperature was lowered by up to 6-7℃ in the source area of the Yellow River when the ice-wedge pseudomorphs and thawing-freezing folds developed.
基金Under the auspices of the Chinese Academy of Sciences(CAS)Key Research Program(No.KZZD-EW-13)National Natural Science Foundation of China(No.91647103)
文摘The ground ice content in permafrost serves as one of the dominant properties of permafrost for the study of global climate change, ecology, hydrology and engineering construction in cold regions. This paper initially attempts to assess the ground ice volume in permafrost layers on the Qinghai-Tibet Plateau by considering landform types, the corresponding lithological composition, and the measured water content in various regions. An approximation demonstrating the existence of many similarities in lithological composition and water content within a unified landform was established during the calculations. Considerable knowledge of the case study area, here called the Source Area of the Yellow(Huanghe) River(SAYR) in the northeastern Qinghai-Tibet Plateau, has been accumulated related to permafrost and fresh water resources during the past 40 years. Considering the permafrost distribution, extent, spatial distribution of landform types, the ground ice volume at the depths of 3.0–10.0 m below the ground surface was estimated based on the data of 101 boreholes from field observations and geological surveys in different types of landforms in the permafrost region of the SAYR. The total ground ice volume in permafrost layers at the depths of 3.0–10.0 m was approximately(51.68 ± 18.81) km^3, and the ground ice volume per unit volume was(0.31 ± 0.11) m^3/m^3. In the horizontal direction, the ground ice content was higher in the landforms of lacustrine-marshland plains and alluvial-lacustrine plains, and the lower ground ice content was distributed in the erosional platforms and alluvial-proluvial plains. In the vertical direction, the volume of ground ice was relatively high in the top layers(especially near the permafrost table) and at the depths of 7.0–8.0 m. This calculation method will be used in the other areas when the necessary information is available, including landform type, borehole data, and measured water content.
基金supported by the National Natural Science Foundation of China(Grant Nos.42171160 and 42172205).
文摘In the north-eastern Qinghai-Tibet Plateau(QTP),the source area of the Yellow River(SAYR)has been experiencing significant changes in climatic and environmental conditions in recent decades.To date,few studies have combined modern hydrological conditions with paleoclimate records to explore the mechanism(s)of these changes.This study seeks to improve understanding of hydrological variability on decadal and centennial timescales in the SAYR and to identify its general cause.We first determined annual fluctuations in the surface area of Lake Ngoring from 1985 to 2020 using multi-temporal Landsat images.The results show that lake surface area changes were generally consistent with variations in precipitation,streamflow and the regional dry-wet index in the SAYR,suggesting that the water balance of the Lake Ngoring area is closely associated with regional hydroclimate changes.These records are also comparable to the stalagmite δ^(18)O monsoon record,as well fluctuations in the Southern Oscillation Index(SOI).Moreover,an association of high TSI(total solar insolation)anomalies and sunspot numbers with the expansion of Lake Ngoring surface area is observed,implying that solar activity is the key driving factor for hydrologic variability in the SAYR on a decadal timescale.Following this line of reasoning,we compared the δ^(13)C org-based lake level fluctuations of Lake Ngoring for the last millennium,as previously reported,with the hydroclimatic history and the reconstructed TSI record.We conclude that the hydrological regime of Lake Ngoring has been mainly controlled by centennial fluctuations in precipitation for the last millennium,which is also dominated by solar activity.In general,it appears that solar activity has exerted a dominant influence on the hydrological regime of the SAYR on both decadal and centennial timescales,which is clearly manifested in the variations of lake area and water level of Lake Ngoring.
基金supported by the National Key Basic Research Program on Global Change of China(2011CB952001)the National Key Basic Research Special Foundation of China(2006FY1106000)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)and the Open Fund Program of the State Key Laboratory of RemoteSensing Science,China(OFSLRSS201112)
文摘During the years 2006–2009,lakes in the Qinghai-Tibetan Plateau(QTP)were investigated using satellite remote sensing strategies.We report the results of this investigation as well as follow-up research and expanded work.For the investigation,we mainly focused on lakes whose areas are more than 1 km2.The remote sensing data that we used included 408 scenes of CBERS CCD images and 5 scenes of Landsat ETM?images in Qinghai Province and Tibet Autonomous Region.All these data were acquired around years 2005–2006.Besides remote sensing images,we also collected 1,259 topographic maps.Numbers and areas of lakes were analyzed statistically,which were then compared with those coming from the first lake investigation(implemented between the1960s and 1980s).According to our investigation,up to and around year 2005–2006,the total number of lakes in the QTP was 1,055(222 in Qinghai and 833 in Tibet),accounting for more than 30%of that of China.Thirty newborn lakes with area[1 km2were found,and 5 dead lakes with initial area[1 km2were also found.Among those 13 big lakes([500 km2),Yamzhog Yumco had seriously shrunk,and it has continued to shrink in recent years;Qinghai Lake had shrunk during the period,but some new researches indicated that it has been expanding since the year 2004;Siling Co,Nam Co,and Chibuzhang Co had expanded in the period.We divided the newborn lakes into six categories according to their forming reasons,including river expansion,wetland conversion,etc.The changes of natural conditions led to the death of four lakes,and human exploitation was the main reason for the death of Dalianhai Lake in Qinghai.We picked out three regions which were sensitive to the change of climate and ecological environment:Nagqu Region,Kekexili Region,and the source area of the Yellow River(SAYR).Lakes in both Nagqu and Kekexili have been expanded;meanwhile,most lakes in the SAYR have obviously been shrunk.These regional patterns of lake changes were highly related to variations of temperature,glacier,precipitation,and evaporation.Our investigation and analysis will provide references for researches related to lake changes in the QTP and the response to climate fluctuations.