The depositional environment of the sands of the cover formation is discussed. This study aims to determine the paleoenvironments of deposition of the sands of the cover formation in the Batéké Plateaus by s...The depositional environment of the sands of the cover formation is discussed. This study aims to determine the paleoenvironments of deposition of the sands of the cover formation in the Batéké Plateaus by studying sedimentary dynamics based on the description of lithological facies in the field and granulometric analyses in the laboratory. In the field, six (6) lithostratigraphic logs were surveyed and 42 sand samples were taken for laboratory analysis. In the laboratory, the samples underwent granulometric, sieving and sedimentometry analyses, after washing with running water using a 63 µm sieve. These analyses made it possible to determine the granulometric classes of the samples. The sieving results allowed to determine the granulometric parameters (mean, standard deviation, mode, median, skewness, flattening or kurtosis) using the method of moments with the software “Gradistat V.8”, granulometric parameters with which the granulometric facies, the mode of transport and the deposition environment were determined using the diagrams. Morphoscopy made it possible to determine the form and aspect of the surface of the quartz grains constituting these sands. Granulometric analyses show that these silty-clay or clayey-silty sands are fine sands and rarely medium sands, moderately to well sorted and rarely well sorted. The dominant granulometric facies is hyperbolic (sigmoid), with parabolic facies being rare. The primary mode of transport of these sands is saltation, which dominates rolling. The dispersion of points in the diagrams shows that these sands originate from two depositional environments: aeolian and fluvial. Morphoscopic analysis reveals the presence of clean rounded matt grains (RM), dirty rounded matt grains (RS), shiny blunt grains (EL) and shiny rounded grains (RL). The rounded matt grains exhibit several impact marks. The presence of dirty rounded grains with a ferruginous cement on their surface indicates that these sands have been reworked. These sands have undergone two types of transport, first by wind (aeolian environment) and then by water (fluvial environment).展开更多
Protecting the ecological security of the Qinghai-Tibet Plateau(QTP)is of great importance for global ecology and climate.Over the past few decades,climate extremes have posed a significant challenge to the ecological...Protecting the ecological security of the Qinghai-Tibet Plateau(QTP)is of great importance for global ecology and climate.Over the past few decades,climate extremes have posed a significant challenge to the ecological environment of the QTP.However,there are few studies that explored the effects of climate extremes on ecological environment quality of the QTP,and few researchers have made quantitative analysis.Hereby,this paper proposed the Ecological Environmental Quality Index(EEQI)for analyzing the spatial and temporal variation of ecological environment quality on the QTP from 2000 to 2020,and explored the effects of climate extremes on EEQI based on Geographically and Temporally Weighted Regression(GTWR)model.The results showed that the ecological environment quality in QTP was poor in the west,but good in the east.Between 2000 and 2020,the area of EEQI variation was large(34.61%of the total area),but the intensity of EEQI variation was relatively low and occurred mainly by a slightly increasing level(EEQI change range of 0.05-0.1).The overall ecological environment quality of the QTP exhibited spatial and temporal fluctuations,which may be attributed to climate extremes.Significant spatial heterogeneity was observed in the effects of the climate extremes on ecological environment quality.Specifically,the effects of daily temperature range(DTR),number of frost days(FD0),maximum 5-day precipitation(RX5day),and moderate precipitation days(R10)on ecological environment quality were positive in most regions.Furthermore,there were significant temporal differences in the effects of consecutive dry days(CDD),consecutive wet days(CWD),R10,and FD0 on ecological environment quality.These differences may be attributed to variances in ecological environment quality,climate extremes,and vegetation types across different regions.In conclusion,the impact of climate extremes on ecological environment quality exhibits complex patterns.These findings will assist managers in identifying changes in the ecological environment quality of the QTP and addressing the effects of climate extremes.展开更多
The monitoring,prediction and assessment of status about climate changes and ecological environment at home and abroad were discussed in this study,and the scientific significance and countermeasures for Qinghai-Tibet...The monitoring,prediction and assessment of status about climate changes and ecological environment at home and abroad were discussed in this study,and the scientific significance and countermeasures for Qinghai-Tibet Plateau to cope with these problems were also put forward.展开更多
The Qinghai Xizang (Tibet) Plateau area was subjected to twice uplift and planation in the Tertiary. Intense uplifting of the plateau area has given rise to drastic changes and differentiation of physical environment ...The Qinghai Xizang (Tibet) Plateau area was subjected to twice uplift and planation in the Tertiary. Intense uplifting of the plateau area has given rise to drastic changes and differentiation of physical environment on the plateau and the surrounding area since 3.4 Ma B.P. Significant environmental changes with dry tendency in interior of the plateau had occurred during the last 150 ka B.P. By comparative study on several mountains of the plateau, two systems of the structure type of the altitudinal belt are identified and nine groups are subdivided . A distribution model with close relevance to highland uplift effect has been generalized. A number of striking geo ecological phenomena and their spatial pattern such as moisture corridor, dry valleys, high cold meadow zone, and high cold arid core area are investigated and discussed. Based on the thermal conditions, moisture regimes and variation in landforms of the plateau is sequentially demarcated. A tentative scheme of 2 temperature belts, 10 natural zones and 28 physical districts has been proposed not including southern slopes of the East Himalayas. The Qinghai Xizang Plateau is sensitive to “green house effect”, showing close relation with global change. Characteristics of temperature and precipitation on the plateau during the last 2000 years, and response of glaciers, snow deposit and permafrost on the plateau to global change are dealt with in the present paper.展开更多
Based on the remote sensing survey and monitoring results of snow lines on the Qinghai-Tibet Plateau, the authors analyzed the following eco-geological factors such as water resources, permafrost, desertification, wet...Based on the remote sensing survey and monitoring results of snow lines on the Qinghai-Tibet Plateau, the authors analyzed the following eco-geological factors such as water resources, permafrost, desertification, wetlands, lake, geological disasters, sea-level rising, earthquake, etc., affected by the change of snow lines over the past 40 years, and discuss the response between glacier evolution and the eco-geological environment preliminarily.展开更多
n-Alkanes are widely used in paleoenvironmental reconstructions.However,our understanding of changes in the distribution of n-alkanes with climatic and environmental factors remains unclear in arid/semi-arid regions.W...n-Alkanes are widely used in paleoenvironmental reconstructions.However,our understanding of changes in the distribution of n-alkanes with climatic and environmental factors remains unclear in arid/semi-arid regions.We sampled 26 surface sediments from three climatic zones across the southwestern Tibetan Plateau to evaluate the sensitivity of chain length distributions of n-alkanes to climatic and environmental parameters.Our observations demonstrate that average chain length(ACL),proportion of aquatic macrophyte(Paq),carbon preference index(CPI)and ratio of the contents of nC_(27)and nC_(31)(nC_(27)/nC_(31))are all sensitive to hydroclimatic conditions.In contrast to commonly-adopted assumptions,the correlations between these indices and hydrological parameters are not always good,which indicates that the interpretation of n-alkane indices is special on the southwestern Tibetan Plateau.These might be related to the vegetation characteristics and seasonality of biological activity,and need to be considered in paleoclimatic reconstruction.The impact of seasonal precipitation on n-alkanes indices was also evaluated.展开更多
A three-dimensional diesel particulate filter(DPF)simulation model was developed by using AVL software FIRE to study the effects of four factors on soot particle distributions along the axial and radial directions in ...A three-dimensional diesel particulate filter(DPF)simulation model was developed by using AVL software FIRE to study the effects of four factors on soot particle distributions along the axial and radial directions in the DPF after the model accuracy was validated.An orthogonal test method was used to determine the importance and weights of the design of experiments(DoE)factors such as the expanding angle,the number of channels per square inch,and the exhaust mass flow rate.The effects of these factors on the uniformity of the soot particle distributions were also analyzed.The results show that when the soot loading time was 400 s,the soot particles inside the DPF along the axial direction exhibited a bowl shape,which was high on the both ends and low in the middle.The uniformity of the axial distribution of soot particles reduces significantly with an increase in the number of channels per square inch.The uniformity of the radial distribution reduced with an increase in the expanding angle of the divergent tube.Based on the impacts on the axial uniformity,the three most influencing factors in a descending order are the number of channels per square inch,the exhaust mass flow rate,and the expanding angle of the divergent tube.展开更多
We designed two types of pre-adaption plans for this study. One was a pre-adaption training with progressive intermittent hypoxia, with a constant lower pressure oxygen tank used in the plain before arriving at the pl...We designed two types of pre-adaption plans for this study. One was a pre-adaption training with progressive intermittent hypoxia, with a constant lower pressure oxygen tank used in the plain before arriving at the plateau (PG). The other was by progressively increasing the time of exposure to hypoxia with oxygen supplied in stages after radical plateau (RG). By testing the blood oxygen saturation (SpO2), heart rate (HR), and quality of sleep after arriving at the 3800 m high plateau, results showed that the pre-acclimatization and radical groups performed better than the control group (CG). Both strategies were equivalent in terms of effects and principles in providing more flexible choices for acclimatization.展开更多
The surface watershed and groundwater basin have fixed recharge scale,which are not only the basic unit for hydrologic cycle research but also control the water resources formation and evolution and its corresponding ...The surface watershed and groundwater basin have fixed recharge scale,which are not only the basic unit for hydrologic cycle research but also control the water resources formation and evolution and its corresponding eco-geological environment pattern.To accurately identify the boundary of the surface watershed and groundwater basin is the basis for properly understanding hydrologic cycle and conducting the water balance analysis at watershed scale in complicated geologic structure area,especially when the boundary are inconsistent.In this study,the Dalinuoer Lake located in the middle of the Inner Mongolian Plateau which has complicated geologic structure was selected as the representative case.Based on the multidisciplinary comprehensive analysis of topography,tectonics,hydrogeology,groundwater dynamics and stable isotopes,the results suggest the following:(1)The surface watershed ridge and groundwater basin divide of Dalinuoer Lake are inconsistent.The surface watershed was divided into two separate groundwater systems almost having no groundwater exchange by the SW-NE Haoluku Anticlinorium Fault which has obvious water-blocking effect.The surface drainage area of Dalinuoer Lake is 6139 km^(2).The northern regional A is the Dalinuoer Lake groundwater system with an area of 4838 km^(2),and the southern regional B is the Xilamulun Riverhead groundwater system with an area of 1301 km^(2).(2)The groundwater in the southern of regional A and the spring-feeding river are the important recharge sources for the Dalinuoer Lake,and it has greater recharge effects than the northern Gonggeer River system.(3)It is speculated that the trend of Haoluku Anticlinorium Fault is the boundary of the westerlies and the East Asian summer Monsoon(EASM)climate systems,which further pinpoints the predecessor’s understanding of this boundary line.At present,the Dalinuoer Lake watershed is proved to have gone through a prominent warming-drying trend periods,which leads to the precipitation reduction,temperature rise,human activities water usage increasement.So the hydrological cycle and lake eco-environment at watershed scale will still bound to be change,which may pose the potential deterioration risk on the suitability of fish habitat.The results can provide basic support for better understanding water balance evolution and lake area shrinkage cause as well as the ecological protection and restoration implementation of Dalinuoer Lake watershed.展开更多
The large-scale summer monsoon circulations of south Asia makes a strong impact on precipitation in the area of southwestern China including Qinghai-Tibetan Plateau and Yun-Gui Plateau.however,the monsoon is both spat...The large-scale summer monsoon circulations of south Asia makes a strong impact on precipitation in the area of southwestern China including Qinghai-Tibetan Plateau and Yun-Gui Plateau.however,the monsoon is both spatially and temporally complex and smaller-scale circulations are forced by a variety of local or regional orographic effects,local or regional land-atmosphere or展开更多
Long and short-term climatic curves were preliminarily established based on thecomprehensive analysis of gaxhemical information since the Late Cenozoic in the Qinghai-Xizang (Qinghai-Tibet) Plateau. The curves show th...Long and short-term climatic curves were preliminarily established based on thecomprehensive analysis of gaxhemical information since the Late Cenozoic in the Qinghai-Xizang (Qinghai-Tibet) Plateau. The curves show that the climate in the plateau was alterna-tively dry-wartn and cod-wet during the peried of 30 - 3. 4 Ma when the plateau was not up-lifted to an enough altitude and the monam was not completely formed either. In the peried of3. 4 - 0. 73 Ma, the climate fluctuated between dryco1d and wet-warm when the plateau wasrapidly uplifted and the Asian monam was conequently formed. Since 0. 73 Ma, the climatebecame even drier when the plateau continuously are. In the Holocene period, the climate alternatively changed with a complex medel of being coo-dry, warm-wet and cold-wet.展开更多
The Niyang River, a main tributary of the Yarlung Zangbo River, is an important and typical plateau fiver ecosystem in Tibet, China. At present, few studies have focused on its aquatic living resources and fiver ecolo...The Niyang River, a main tributary of the Yarlung Zangbo River, is an important and typical plateau fiver ecosystem in Tibet, China. At present, few studies have focused on its aquatic living resources and fiver ecology. In this study, the composition, abundance, and diversity of periphytic protozoa were investigated across four seasons from 2008 to 2009 to better understand their spatio-temporal patterns and relationship to the environment. Our investigation shows that periphytic protozoa in the Niyang River contained 15 genera, belonged to Tubulinea, Alveolata, Discosea and Rhizaria, Alveolata possessed most genera, up to nine, with highest share in abundance, exceeding 50%, Difflugia and Glaucoma were dominant genera. Moreover, four diversity indices of periphytic protozoa, including species richness, total abundance, Shannon-Wiener diversity index and Pielou's evenness index, displayed a significant descending trend as the seasons continued, in the order of winter, spring, summer and autumn; with a significant difference existing between winter and summer (or autumn) for Shannon-Wiener diversity index and species richness (P〈0.05). Four of these diversity indices also presented a V-shaped pattern between the upper middle course of the Niyang River and the confluence of the Niyang River and Yarlung Zangbo River, with the lowest value occurred in the middle course of the Niyang River. However, no significant variation was found through the Niyang River (P〉0.05). In addition, canonical correlation analysis (CCA) shows that the densities of Difflugia, Glaucomais, Enchelydium, Cyphoderia, and Enchelys correlate with water temperature, alkalinity, hardness, pH, and dissolved oxygen, respectively. Lastly, the relationship between periphytic protozoa diversity and the environmental factors of the Niyang River can be predicted using classification and regression trees (CART) annalysis, which suggests that the total abundance and Shannon-Wiener diversity index would be higher when the elevation is above 3 308 m. On the other hand, the Shannon-Wiener diversity index and Pielou's evenness index would be lower when pH and ammoniacal nitrogen have lower or higher values. Finally yet importantly, close attention should be paid to periphytic protozoa and its environment to ensure sustainable development of the Niyang River ecosystem.展开更多
Conditions of the water environment in the region of the Zhaling and Eling lakes, which are located in the frozen earth zone on the Qingzang plateau, are unique. The equilibrium of the water quantity of the two lakes...Conditions of the water environment in the region of the Zhaling and Eling lakes, which are located in the frozen earth zone on the Qingzang plateau, are unique. The equilibrium of the water quantity of the two lakes is maladjustment under the condition of a dry and cold climate in which evaporation is greater than precipitation. The Zhaling and Eling lakes have been atrophying, leaving three lake terraces and star studded lagoons around the two lakes since Holocene. When these lagoons were separated from the original lakes, they became cut lake basins, and were transformed from fresh water lakes into salt water lakes, salt lakes or salt playas owing to strong evaporation. This kind of evolutionary process will continue in the future.展开更多
There are a large number of lakes,rivers,and other natural water bodies distributed in the permafrost area of the Qinghai-Tibet Plateau(QTP).The changes in water bodies will affect the distribution of water resources ...There are a large number of lakes,rivers,and other natural water bodies distributed in the permafrost area of the Qinghai-Tibet Plateau(QTP).The changes in water bodies will affect the distribution of water resources in sur-rounding areas and downstream areas,resulting in environmental impact and bringing potential flood disasters,which will induce more serious issues and problems in alpine and high-altitude areas with a fragile habitat(such as the QTP in China).Generally,effective,reasonable,and scientific monitoring of large-scale water bodies can not only document the changes in water bodies intuitively,but also provide important theoretical reference for subsequent environmental impact prediction,and disaster prevention and mitigation in due course of time.The large-scale water extraction technology derived from the optical remote sensing(RS)image is seriously affected by clouds,bringing about large differences among the extracted water result products.Synthetic aperture radar(SAR)RS technology has the unique advantage characteristics of all-weather,all-day,strong penetration,and not being affected by clouds,which is hopeful in extracting water body data,especially for days with cloudy weather.The data extraction of large-scale water bodies based on SAR images can effectively avoid the errors caused by clouds that become prevalent at present.In this paper,the Hoh Xil Salt Lake on the QTP and its surrounding five lakes are taken as the research objects.The 2-scene Sentinel-1 SAR image data covering the whole area on 22 August 2022 was used to verify the feasibility of extracting water body data in permafrost zones.Furthermore,on 22 August 2022,the wealth here was cloudy,which made the optical RS images,e.g.,Sentinel-2 images full of clouds.The results show that:using the Sentinel-1 image and threshold segmentation method to extract water body data is efficient and effective with excellent results in permafrost areas.Concretely,the Sentinel-1 dual-polarized water index(SDWI),calculated by combining dual vertical–vertical(VV)polarized and verti-cal–horizontal(VH)polarized data is a useful index for water extraction and the result is better than each of the VV or VH polarized images.展开更多
文摘The depositional environment of the sands of the cover formation is discussed. This study aims to determine the paleoenvironments of deposition of the sands of the cover formation in the Batéké Plateaus by studying sedimentary dynamics based on the description of lithological facies in the field and granulometric analyses in the laboratory. In the field, six (6) lithostratigraphic logs were surveyed and 42 sand samples were taken for laboratory analysis. In the laboratory, the samples underwent granulometric, sieving and sedimentometry analyses, after washing with running water using a 63 µm sieve. These analyses made it possible to determine the granulometric classes of the samples. The sieving results allowed to determine the granulometric parameters (mean, standard deviation, mode, median, skewness, flattening or kurtosis) using the method of moments with the software “Gradistat V.8”, granulometric parameters with which the granulometric facies, the mode of transport and the deposition environment were determined using the diagrams. Morphoscopy made it possible to determine the form and aspect of the surface of the quartz grains constituting these sands. Granulometric analyses show that these silty-clay or clayey-silty sands are fine sands and rarely medium sands, moderately to well sorted and rarely well sorted. The dominant granulometric facies is hyperbolic (sigmoid), with parabolic facies being rare. The primary mode of transport of these sands is saltation, which dominates rolling. The dispersion of points in the diagrams shows that these sands originate from two depositional environments: aeolian and fluvial. Morphoscopic analysis reveals the presence of clean rounded matt grains (RM), dirty rounded matt grains (RS), shiny blunt grains (EL) and shiny rounded grains (RL). The rounded matt grains exhibit several impact marks. The presence of dirty rounded grains with a ferruginous cement on their surface indicates that these sands have been reworked. These sands have undergone two types of transport, first by wind (aeolian environment) and then by water (fluvial environment).
基金funded by the key R&D project of the Sichuan Provincial Department of Science and Technology,“Research and Application of Key Technologies for Agricultural Drought Monitoring in Tibet Based on Multi-source Remote Sensing Data”(2021YFQ0042)Tibet Autonomous Region Science and Technology Support Plan Project“Construction and Demonstration Application of Ecological Environment Monitoring Technology System in Tibet Based on Three-Dimensional Remote Sensing Observation Network”(XZ201901-GA-07)。
文摘Protecting the ecological security of the Qinghai-Tibet Plateau(QTP)is of great importance for global ecology and climate.Over the past few decades,climate extremes have posed a significant challenge to the ecological environment of the QTP.However,there are few studies that explored the effects of climate extremes on ecological environment quality of the QTP,and few researchers have made quantitative analysis.Hereby,this paper proposed the Ecological Environmental Quality Index(EEQI)for analyzing the spatial and temporal variation of ecological environment quality on the QTP from 2000 to 2020,and explored the effects of climate extremes on EEQI based on Geographically and Temporally Weighted Regression(GTWR)model.The results showed that the ecological environment quality in QTP was poor in the west,but good in the east.Between 2000 and 2020,the area of EEQI variation was large(34.61%of the total area),but the intensity of EEQI variation was relatively low and occurred mainly by a slightly increasing level(EEQI change range of 0.05-0.1).The overall ecological environment quality of the QTP exhibited spatial and temporal fluctuations,which may be attributed to climate extremes.Significant spatial heterogeneity was observed in the effects of the climate extremes on ecological environment quality.Specifically,the effects of daily temperature range(DTR),number of frost days(FD0),maximum 5-day precipitation(RX5day),and moderate precipitation days(R10)on ecological environment quality were positive in most regions.Furthermore,there were significant temporal differences in the effects of consecutive dry days(CDD),consecutive wet days(CWD),R10,and FD0 on ecological environment quality.These differences may be attributed to variances in ecological environment quality,climate extremes,and vegetation types across different regions.In conclusion,the impact of climate extremes on ecological environment quality exhibits complex patterns.These findings will assist managers in identifying changes in the ecological environment quality of the QTP and addressing the effects of climate extremes.
文摘The monitoring,prediction and assessment of status about climate changes and ecological environment at home and abroad were discussed in this study,and the scientific significance and countermeasures for Qinghai-Tibet Plateau to cope with these problems were also put forward.
文摘The Qinghai Xizang (Tibet) Plateau area was subjected to twice uplift and planation in the Tertiary. Intense uplifting of the plateau area has given rise to drastic changes and differentiation of physical environment on the plateau and the surrounding area since 3.4 Ma B.P. Significant environmental changes with dry tendency in interior of the plateau had occurred during the last 150 ka B.P. By comparative study on several mountains of the plateau, two systems of the structure type of the altitudinal belt are identified and nine groups are subdivided . A distribution model with close relevance to highland uplift effect has been generalized. A number of striking geo ecological phenomena and their spatial pattern such as moisture corridor, dry valleys, high cold meadow zone, and high cold arid core area are investigated and discussed. Based on the thermal conditions, moisture regimes and variation in landforms of the plateau is sequentially demarcated. A tentative scheme of 2 temperature belts, 10 natural zones and 28 physical districts has been proposed not including southern slopes of the East Himalayas. The Qinghai Xizang Plateau is sensitive to “green house effect”, showing close relation with global change. Characteristics of temperature and precipitation on the plateau during the last 2000 years, and response of glaciers, snow deposit and permafrost on the plateau to global change are dealt with in the present paper.
文摘Based on the remote sensing survey and monitoring results of snow lines on the Qinghai-Tibet Plateau, the authors analyzed the following eco-geological factors such as water resources, permafrost, desertification, wetlands, lake, geological disasters, sea-level rising, earthquake, etc., affected by the change of snow lines over the past 40 years, and discuss the response between glacier evolution and the eco-geological environment preliminarily.
基金co-supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0201)the Basic Scientific Research Fund of Institute of Geology,Chinese Academy of Geological Sciences(J2018),Geological Survey Project of China(DD20190370)+1 种基金National Natural Science Foundation of China(Grant 41877301)China Postdoctoral Science Foundation(2017M620852)。
文摘n-Alkanes are widely used in paleoenvironmental reconstructions.However,our understanding of changes in the distribution of n-alkanes with climatic and environmental factors remains unclear in arid/semi-arid regions.We sampled 26 surface sediments from three climatic zones across the southwestern Tibetan Plateau to evaluate the sensitivity of chain length distributions of n-alkanes to climatic and environmental parameters.Our observations demonstrate that average chain length(ACL),proportion of aquatic macrophyte(Paq),carbon preference index(CPI)and ratio of the contents of nC_(27)and nC_(31)(nC_(27)/nC_(31))are all sensitive to hydroclimatic conditions.In contrast to commonly-adopted assumptions,the correlations between these indices and hydrological parameters are not always good,which indicates that the interpretation of n-alkane indices is special on the southwestern Tibetan Plateau.These might be related to the vegetation characteristics and seasonality of biological activity,and need to be considered in paleoclimatic reconstruction.The impact of seasonal precipitation on n-alkanes indices was also evaluated.
基金Project(52066008)supported by the National Natural Science Foundation,ChinaProject(2018FA030)supported by Yunnan Province Fundamental Research Key Project Foundation,China+1 种基金Project(2018ZE001)supported by Yunnan Province Major Science and Technology Project Foundation,ChinaProject(202005AG070057)supported by Yunnan Province Science and Technology Innovation Funds for key Laboratories,China。
文摘A three-dimensional diesel particulate filter(DPF)simulation model was developed by using AVL software FIRE to study the effects of four factors on soot particle distributions along the axial and radial directions in the DPF after the model accuracy was validated.An orthogonal test method was used to determine the importance and weights of the design of experiments(DoE)factors such as the expanding angle,the number of channels per square inch,and the exhaust mass flow rate.The effects of these factors on the uniformity of the soot particle distributions were also analyzed.The results show that when the soot loading time was 400 s,the soot particles inside the DPF along the axial direction exhibited a bowl shape,which was high on the both ends and low in the middle.The uniformity of the axial distribution of soot particles reduces significantly with an increase in the number of channels per square inch.The uniformity of the radial distribution reduced with an increase in the expanding angle of the divergent tube.Based on the impacts on the axial uniformity,the three most influencing factors in a descending order are the number of channels per square inch,the exhaust mass flow rate,and the expanding angle of the divergent tube.
基金supported in part by the national basic research program of China 973 program(NO.2012CB518200-G)Army major issue of comprehensive medical security research of flight crew in the plateau(N0.AKJ11J005)
文摘We designed two types of pre-adaption plans for this study. One was a pre-adaption training with progressive intermittent hypoxia, with a constant lower pressure oxygen tank used in the plain before arriving at the plateau (PG). The other was by progressively increasing the time of exposure to hypoxia with oxygen supplied in stages after radical plateau (RG). By testing the blood oxygen saturation (SpO2), heart rate (HR), and quality of sleep after arriving at the 3800 m high plateau, results showed that the pre-acclimatization and radical groups performed better than the control group (CG). Both strategies were equivalent in terms of effects and principles in providing more flexible choices for acclimatization.
基金This work was financially supported by the Hydrogeology and Water Resources Survey Program of China Geological Survey(20230006-06,DD20190322)the National Natural Science Foundation of China(42130613).
文摘The surface watershed and groundwater basin have fixed recharge scale,which are not only the basic unit for hydrologic cycle research but also control the water resources formation and evolution and its corresponding eco-geological environment pattern.To accurately identify the boundary of the surface watershed and groundwater basin is the basis for properly understanding hydrologic cycle and conducting the water balance analysis at watershed scale in complicated geologic structure area,especially when the boundary are inconsistent.In this study,the Dalinuoer Lake located in the middle of the Inner Mongolian Plateau which has complicated geologic structure was selected as the representative case.Based on the multidisciplinary comprehensive analysis of topography,tectonics,hydrogeology,groundwater dynamics and stable isotopes,the results suggest the following:(1)The surface watershed ridge and groundwater basin divide of Dalinuoer Lake are inconsistent.The surface watershed was divided into two separate groundwater systems almost having no groundwater exchange by the SW-NE Haoluku Anticlinorium Fault which has obvious water-blocking effect.The surface drainage area of Dalinuoer Lake is 6139 km^(2).The northern regional A is the Dalinuoer Lake groundwater system with an area of 4838 km^(2),and the southern regional B is the Xilamulun Riverhead groundwater system with an area of 1301 km^(2).(2)The groundwater in the southern of regional A and the spring-feeding river are the important recharge sources for the Dalinuoer Lake,and it has greater recharge effects than the northern Gonggeer River system.(3)It is speculated that the trend of Haoluku Anticlinorium Fault is the boundary of the westerlies and the East Asian summer Monsoon(EASM)climate systems,which further pinpoints the predecessor’s understanding of this boundary line.At present,the Dalinuoer Lake watershed is proved to have gone through a prominent warming-drying trend periods,which leads to the precipitation reduction,temperature rise,human activities water usage increasement.So the hydrological cycle and lake eco-environment at watershed scale will still bound to be change,which may pose the potential deterioration risk on the suitability of fish habitat.The results can provide basic support for better understanding water balance evolution and lake area shrinkage cause as well as the ecological protection and restoration implementation of Dalinuoer Lake watershed.
文摘The large-scale summer monsoon circulations of south Asia makes a strong impact on precipitation in the area of southwestern China including Qinghai-Tibetan Plateau and Yun-Gui Plateau.however,the monsoon is both spatially and temporally complex and smaller-scale circulations are forced by a variety of local or regional orographic effects,local or regional land-atmosphere or
文摘Long and short-term climatic curves were preliminarily established based on thecomprehensive analysis of gaxhemical information since the Late Cenozoic in the Qinghai-Xizang (Qinghai-Tibet) Plateau. The curves show that the climate in the plateau was alterna-tively dry-wartn and cod-wet during the peried of 30 - 3. 4 Ma when the plateau was not up-lifted to an enough altitude and the monam was not completely formed either. In the peried of3. 4 - 0. 73 Ma, the climate fluctuated between dryco1d and wet-warm when the plateau wasrapidly uplifted and the Asian monam was conequently formed. Since 0. 73 Ma, the climatebecame even drier when the plateau continuously are. In the Holocene period, the climate alternatively changed with a complex medel of being coo-dry, warm-wet and cold-wet.
基金Supported by Regional Fund Key Projects from Technology Gallery in Tibet,Agro-Technical Popularization from Finance Department in Tibet,the National Special Research Fund for Non-Profit Sector(Agriculture)(No.201403012)the National Natural Science Foundation of China(No.31560144)the State Key Laboratory of Freshwater Ecology and Biotechnology(No.2011FBZ28)
文摘The Niyang River, a main tributary of the Yarlung Zangbo River, is an important and typical plateau fiver ecosystem in Tibet, China. At present, few studies have focused on its aquatic living resources and fiver ecology. In this study, the composition, abundance, and diversity of periphytic protozoa were investigated across four seasons from 2008 to 2009 to better understand their spatio-temporal patterns and relationship to the environment. Our investigation shows that periphytic protozoa in the Niyang River contained 15 genera, belonged to Tubulinea, Alveolata, Discosea and Rhizaria, Alveolata possessed most genera, up to nine, with highest share in abundance, exceeding 50%, Difflugia and Glaucoma were dominant genera. Moreover, four diversity indices of periphytic protozoa, including species richness, total abundance, Shannon-Wiener diversity index and Pielou's evenness index, displayed a significant descending trend as the seasons continued, in the order of winter, spring, summer and autumn; with a significant difference existing between winter and summer (or autumn) for Shannon-Wiener diversity index and species richness (P〈0.05). Four of these diversity indices also presented a V-shaped pattern between the upper middle course of the Niyang River and the confluence of the Niyang River and Yarlung Zangbo River, with the lowest value occurred in the middle course of the Niyang River. However, no significant variation was found through the Niyang River (P〉0.05). In addition, canonical correlation analysis (CCA) shows that the densities of Difflugia, Glaucomais, Enchelydium, Cyphoderia, and Enchelys correlate with water temperature, alkalinity, hardness, pH, and dissolved oxygen, respectively. Lastly, the relationship between periphytic protozoa diversity and the environmental factors of the Niyang River can be predicted using classification and regression trees (CART) annalysis, which suggests that the total abundance and Shannon-Wiener diversity index would be higher when the elevation is above 3 308 m. On the other hand, the Shannon-Wiener diversity index and Pielou's evenness index would be lower when pH and ammoniacal nitrogen have lower or higher values. Finally yet importantly, close attention should be paid to periphytic protozoa and its environment to ensure sustainable development of the Niyang River ecosystem.
文摘Conditions of the water environment in the region of the Zhaling and Eling lakes, which are located in the frozen earth zone on the Qingzang plateau, are unique. The equilibrium of the water quantity of the two lakes is maladjustment under the condition of a dry and cold climate in which evaporation is greater than precipitation. The Zhaling and Eling lakes have been atrophying, leaving three lake terraces and star studded lagoons around the two lakes since Holocene. When these lagoons were separated from the original lakes, they became cut lake basins, and were transformed from fresh water lakes into salt water lakes, salt lakes or salt playas owing to strong evaporation. This kind of evolutionary process will continue in the future.
基金funded by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program,grant number 2019QZKK0905the National Natural Science Foundation of China,grant number 42272339,42201162,42101121the Research Project of the State Key Laboratory of Frozen Soils Engineering,grant number SKLFSE-ZQ-58,SKLFSE-ZT-202203,SKLFSE-ZY-20.
文摘There are a large number of lakes,rivers,and other natural water bodies distributed in the permafrost area of the Qinghai-Tibet Plateau(QTP).The changes in water bodies will affect the distribution of water resources in sur-rounding areas and downstream areas,resulting in environmental impact and bringing potential flood disasters,which will induce more serious issues and problems in alpine and high-altitude areas with a fragile habitat(such as the QTP in China).Generally,effective,reasonable,and scientific monitoring of large-scale water bodies can not only document the changes in water bodies intuitively,but also provide important theoretical reference for subsequent environmental impact prediction,and disaster prevention and mitigation in due course of time.The large-scale water extraction technology derived from the optical remote sensing(RS)image is seriously affected by clouds,bringing about large differences among the extracted water result products.Synthetic aperture radar(SAR)RS technology has the unique advantage characteristics of all-weather,all-day,strong penetration,and not being affected by clouds,which is hopeful in extracting water body data,especially for days with cloudy weather.The data extraction of large-scale water bodies based on SAR images can effectively avoid the errors caused by clouds that become prevalent at present.In this paper,the Hoh Xil Salt Lake on the QTP and its surrounding five lakes are taken as the research objects.The 2-scene Sentinel-1 SAR image data covering the whole area on 22 August 2022 was used to verify the feasibility of extracting water body data in permafrost zones.Furthermore,on 22 August 2022,the wealth here was cloudy,which made the optical RS images,e.g.,Sentinel-2 images full of clouds.The results show that:using the Sentinel-1 image and threshold segmentation method to extract water body data is efficient and effective with excellent results in permafrost areas.Concretely,the Sentinel-1 dual-polarized water index(SDWI),calculated by combining dual vertical–vertical(VV)polarized and verti-cal–horizontal(VH)polarized data is a useful index for water extraction and the result is better than each of the VV or VH polarized images.