In order to determine whether long-term no-tillage operation in the loess plateau threatens soil fertility and crop yield,a suitable high-yield and efficient tillage technology system was established.In the Changwu lo...In order to determine whether long-term no-tillage operation in the loess plateau threatens soil fertility and crop yield,a suitable high-yield and efficient tillage technology system was established.In the Changwu loess plateau agri-Gecological experiment station of the Northwest A&F University of Changwu County,Shaanxi Province,the no-tillage experimental field for three consecutive years was selected.In September 2015,no-tillage,tillage,and rotary tillage were carried out before winter wheat was sowed.After the harvest of winter wheat in2016,soil organic carbon,total nitrogen and wheat yield in 0-30 cm soil layers under different tillage methods were analyzed.The results showed that the soil organic carbon and total nitrogen contents in the 0-30 cm soil layer decreased along the profile under the three tillage methods.In this study,the soil organic carbon and total nitrogen content in the 0-10 cm soil layer under different tillage methods were no-tillage>rotary tillage>tillage,the actual yield of winter yield in one hectare was tillage>rotary tillage>no-tillage,and there was significant difference in the actual yield of winter wheat only between the no-tillage and tillage.展开更多
This article attempts to investigate the measure effect of rubble roadbed engineering in permafrost regions of Qinghai-Tibet Plateau. As a case study, Chaidaer-Muli Railway is used to evaluate the measure effect of ru...This article attempts to investigate the measure effect of rubble roadbed engineering in permafrost regions of Qinghai-Tibet Plateau. As a case study, Chaidaer-Muli Railway is used to evaluate the measure effect of rubble roadbed engineering in permafrost regions. The AHP(Analytic Hierarchy Process) method is thus employed to establish the evaluation indicator system. The evaluation factor is selected by analyzing the mutual relation between the permafrost environment and roadbed engineering. Thus, a hierarchical structure model is established based on the selected evaluation indices. Each factor is weighted to determine the status in the evaluation system, and grading standards are built for providing a basis for the evaluation. Then, the fuzzy mathematical method is introduced to evaluate the measure effect of rubble roadbed engineering in permafrost regions along the Chadaer-Muli Railway. Results show that most of the permafrost roadbed is in a preferable condition(b) along the Chaidaer-Muli Railway due to rubble engineering measures. This proportion reaches to 86.1%. The proportion in good(a), general(c) and poor states(d) are 0.0%, 7.5% and 6.4%, respectively, in all the evaluation sections along the Chaidaer-Muli Railway. Ground-temperature monitoring results are generally consistent with AHP-FUZZY evaluation results. This means that the AHP-FUZZY method can be applied to evaluate the effect of rubble roadbed engineering measures in permafrost regions. The effect evaluation of engineering measures will provide timely and effective feedback information for further engineering design. The series of engineering measures will more effectively protect permafrost stability.展开更多
In order to find out the effects of long-term no-tillage operation on soil available phosphorus and available potassium in the loess plateau, a suitable high-yield and high-efficiency tillage technology system was est...In order to find out the effects of long-term no-tillage operation on soil available phosphorus and available potassium in the loess plateau, a suitable high-yield and high-efficiency tillage technology system was established. In the Changwu loess plateau agri-ecological experiment station of the Northwest A&F University of Changwu County, Shaanxi Province, the no-tillage experimental field for three consecutive years was selected. In September 2015, no-tillage, tillage, and rotary tillage were carried out before winter wheat was sowed. After the harvest of winter wheat in 2016, the contents of available phosphorus and available potassium in 0-30 cm soil layer under three tillage methods were analyzed. The results showed that in the 0-30 cm soil layer, the soil available phosphorus and available potassium decreased with the increase of the soil depth in the three tillage methods. The content of available phosphorus and available potassium in 10-20 cm soil layer and 20-30 cm soil layer decreased by 16.07%, 32.74%, 15.54% and 27.08%, respectively, and there were significant differences ( P <0.05). Under different tillage methods, the soil available phosphorus content in the 0-10 cm soil layer significantly reduced by 11.31% compared with no-tillage. The soil available potassium content under tillage and rotary tillage significantly reduced by 6.16% and 4.97%, respectively ( P <0.05). Compared with no-tillage, the soil available phosphorus content in the 20-30 cm soil layer significantly reduced by 18.12%. The soil available potassium content under tillage and rotary tillage methods significantly reduced by 17.17% and 9.22%, respectively ( P <0.05). Therefore, in the long-term no-tillage dry loess plateau, it is necessary to conduct proper tillage or rotary tillage.展开更多
We applied the material balance principle of the denudation volume and sedimentary flux to study the denudation-accumulation system between the Longmen Mountains (Mts.) and the foreland basin. The amount of sediment...We applied the material balance principle of the denudation volume and sedimentary flux to study the denudation-accumulation system between the Longmen Mountains (Mts.) and the foreland basin. The amount of sediment in each sedimentation stage of the basin was estimated to obtain the denudation volume, erosion thickness and deposit thickness since the Late Triassic Epoch, to enable us to recover the paleoelevation of the provenance and the sedimentary area. The results show the following: (1) Since the Late Triassic Epoch, the elevation of the surface of the Longmen Mts. has uplifted from 0 m to 2751 m, and the crust of the Longmen Mts. has uplifted by 9.8 km. Approximately 72% of the materials introduced have been denuded from the mountains. (2) It is difficult to recover the paleoelevation of each stage of the Longmen Mts. foreland basin quantitatively by the present-day techniques and data. (3) The formation of the Longmen Mts. foreland basin consisted of three stages of thrust belt tectonic load and three stages of thrust belt erosional unload. During tectonic loading stages (Late Triassic Epoch, Late Jurassic-Early Cretaceous, Late Cretaceous-Miocene), the average elevation of Longmen Mts. was lower (approximately 700-1700 m). During erosional unloading stages (Early and Middle Jurassic, Middle Cretaceous and Jiaguan, Late Cenozoic), the average elevation of Longmen Mts. was high at approximately 2000-2800m.展开更多
Climate change and Land Use/Cover Change(LUCC) have been identified as two primary factors affecting watershed hydrological regime. This study analyzed the trends of streamflow, precipitation, air temperature and po...Climate change and Land Use/Cover Change(LUCC) have been identified as two primary factors affecting watershed hydrological regime. This study analyzed the trends of streamflow, precipitation, air temperature and potential evapotranspiration(PET) from 1962 to 2008 in the Jihe watershed in northwestern Loess Plateau of China using the Mann-Kendall test. The streamflow responses to climate change and LUCC were quantified independently by the elasticity method. The results show that the streamflow presented a dramatic decline with a turning point occurred in 1971, while the precipitation and PET did not change significantly. The results also show that the temperature rose markedly especially since 1990 s with an approximate increase of 1.74°C over the entire research period(1962–2008). Using land use transition matrix, we found that slope cropland was significantly converted to terrace between 1970 s and 1990 s and that forest cover increased relatively significantly because of the Grain for Green Project after 2000. The streamflow reduction was predominantly caused by LUCC and its contribution reached up to 90.2%, while the contribution of climate change to streamflow decline was only 9.8%. Although the analytical results between the elasticity method and linear regression model were not satisfactorily consistent, they both indicated that LUCC(human activity) was the major factor causing streamflow decline in the Jihe watershed from 1962 to 2008.展开更多
文摘In order to determine whether long-term no-tillage operation in the loess plateau threatens soil fertility and crop yield,a suitable high-yield and efficient tillage technology system was established.In the Changwu loess plateau agri-Gecological experiment station of the Northwest A&F University of Changwu County,Shaanxi Province,the no-tillage experimental field for three consecutive years was selected.In September 2015,no-tillage,tillage,and rotary tillage were carried out before winter wheat was sowed.After the harvest of winter wheat in2016,soil organic carbon,total nitrogen and wheat yield in 0-30 cm soil layers under different tillage methods were analyzed.The results showed that the soil organic carbon and total nitrogen contents in the 0-30 cm soil layer decreased along the profile under the three tillage methods.In this study,the soil organic carbon and total nitrogen content in the 0-10 cm soil layer under different tillage methods were no-tillage>rotary tillage>tillage,the actual yield of winter yield in one hectare was tillage>rotary tillage>no-tillage,and there was significant difference in the actual yield of winter wheat only between the no-tillage and tillage.
基金supported by the National Natural Science Foundation of China (Nos. 41501079 and 91647103)the self-determined Project Funded by State Key Laboratory of Frozen Soil Engineering (No. SKLFSE-ZQ-43)the Foundation for Excellent Youth Scholars of NIEER, CAS
文摘This article attempts to investigate the measure effect of rubble roadbed engineering in permafrost regions of Qinghai-Tibet Plateau. As a case study, Chaidaer-Muli Railway is used to evaluate the measure effect of rubble roadbed engineering in permafrost regions. The AHP(Analytic Hierarchy Process) method is thus employed to establish the evaluation indicator system. The evaluation factor is selected by analyzing the mutual relation between the permafrost environment and roadbed engineering. Thus, a hierarchical structure model is established based on the selected evaluation indices. Each factor is weighted to determine the status in the evaluation system, and grading standards are built for providing a basis for the evaluation. Then, the fuzzy mathematical method is introduced to evaluate the measure effect of rubble roadbed engineering in permafrost regions along the Chadaer-Muli Railway. Results show that most of the permafrost roadbed is in a preferable condition(b) along the Chaidaer-Muli Railway due to rubble engineering measures. This proportion reaches to 86.1%. The proportion in good(a), general(c) and poor states(d) are 0.0%, 7.5% and 6.4%, respectively, in all the evaluation sections along the Chaidaer-Muli Railway. Ground-temperature monitoring results are generally consistent with AHP-FUZZY evaluation results. This means that the AHP-FUZZY method can be applied to evaluate the effect of rubble roadbed engineering measures in permafrost regions. The effect evaluation of engineering measures will provide timely and effective feedback information for further engineering design. The series of engineering measures will more effectively protect permafrost stability.
文摘In order to find out the effects of long-term no-tillage operation on soil available phosphorus and available potassium in the loess plateau, a suitable high-yield and high-efficiency tillage technology system was established. In the Changwu loess plateau agri-ecological experiment station of the Northwest A&F University of Changwu County, Shaanxi Province, the no-tillage experimental field for three consecutive years was selected. In September 2015, no-tillage, tillage, and rotary tillage were carried out before winter wheat was sowed. After the harvest of winter wheat in 2016, the contents of available phosphorus and available potassium in 0-30 cm soil layer under three tillage methods were analyzed. The results showed that in the 0-30 cm soil layer, the soil available phosphorus and available potassium decreased with the increase of the soil depth in the three tillage methods. The content of available phosphorus and available potassium in 10-20 cm soil layer and 20-30 cm soil layer decreased by 16.07%, 32.74%, 15.54% and 27.08%, respectively, and there were significant differences ( P <0.05). Under different tillage methods, the soil available phosphorus content in the 0-10 cm soil layer significantly reduced by 11.31% compared with no-tillage. The soil available potassium content under tillage and rotary tillage significantly reduced by 6.16% and 4.97%, respectively ( P <0.05). Compared with no-tillage, the soil available phosphorus content in the 20-30 cm soil layer significantly reduced by 18.12%. The soil available potassium content under tillage and rotary tillage methods significantly reduced by 17.17% and 9.22%, respectively ( P <0.05). Therefore, in the long-term no-tillage dry loess plateau, it is necessary to conduct proper tillage or rotary tillage.
基金the Project of the National Natural Science Foudation of China (Grant No.41372114,41340005,41172162,40972083)
文摘We applied the material balance principle of the denudation volume and sedimentary flux to study the denudation-accumulation system between the Longmen Mountains (Mts.) and the foreland basin. The amount of sediment in each sedimentation stage of the basin was estimated to obtain the denudation volume, erosion thickness and deposit thickness since the Late Triassic Epoch, to enable us to recover the paleoelevation of the provenance and the sedimentary area. The results show the following: (1) Since the Late Triassic Epoch, the elevation of the surface of the Longmen Mts. has uplifted from 0 m to 2751 m, and the crust of the Longmen Mts. has uplifted by 9.8 km. Approximately 72% of the materials introduced have been denuded from the mountains. (2) It is difficult to recover the paleoelevation of each stage of the Longmen Mts. foreland basin quantitatively by the present-day techniques and data. (3) The formation of the Longmen Mts. foreland basin consisted of three stages of thrust belt tectonic load and three stages of thrust belt erosional unload. During tectonic loading stages (Late Triassic Epoch, Late Jurassic-Early Cretaceous, Late Cretaceous-Miocene), the average elevation of Longmen Mts. was lower (approximately 700-1700 m). During erosional unloading stages (Early and Middle Jurassic, Middle Cretaceous and Jiaguan, Late Cenozoic), the average elevation of Longmen Mts. was high at approximately 2000-2800m.
基金funded by the National Natural Science Foundation of China (41501025, 51609083, 41401038, 51509089)the 2016 Key Scientific Research Projects for Universities of Henan Province (16A170014)
文摘Climate change and Land Use/Cover Change(LUCC) have been identified as two primary factors affecting watershed hydrological regime. This study analyzed the trends of streamflow, precipitation, air temperature and potential evapotranspiration(PET) from 1962 to 2008 in the Jihe watershed in northwestern Loess Plateau of China using the Mann-Kendall test. The streamflow responses to climate change and LUCC were quantified independently by the elasticity method. The results show that the streamflow presented a dramatic decline with a turning point occurred in 1971, while the precipitation and PET did not change significantly. The results also show that the temperature rose markedly especially since 1990 s with an approximate increase of 1.74°C over the entire research period(1962–2008). Using land use transition matrix, we found that slope cropland was significantly converted to terrace between 1970 s and 1990 s and that forest cover increased relatively significantly because of the Grain for Green Project after 2000. The streamflow reduction was predominantly caused by LUCC and its contribution reached up to 90.2%, while the contribution of climate change to streamflow decline was only 9.8%. Although the analytical results between the elasticity method and linear regression model were not satisfactorily consistent, they both indicated that LUCC(human activity) was the major factor causing streamflow decline in the Jihe watershed from 1962 to 2008.