Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying availabl...Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.展开更多
This study presents a numerical method based on the surface temperature data and the ground temperature increase in Daqing for predicting temperature field distribution in the Binzhou Railway subgrade and analyzing th...This study presents a numerical method based on the surface temperature data and the ground temperature increase in Daqing for predicting temperature field distribution in the Binzhou Railway subgrade and analyzing the temporal and spatial distribution of freeze−thaw status of railway subgrade.The calibrated numerical method is applied to simulate the temperature field distribution and roadbed vibrational response of the railway subgrade with a thermal insulation layer at different seasons.The results show the following:(1)The thermal insulation layer can remarkably increase the soil temperature below it and maximum frost depth in the subgrade.(2)Thermal insulation can effectively reduce the subgrade vibration and protect it from frost damage.(3)Given that the strength requirements are met,the insulation layer should be buried as shallow as possible to effectively reduce the subgrade vibration response.The research findings provide theoretical support for the frost damage prevention of railway subgrades in seasonally frozen regions.展开更多
In recent years,more and more high-voltage overhead transmission lines were built passing through the karst regions in southwestern China.This type of special landform seems to have an adverse effect on the aging of t...In recent years,more and more high-voltage overhead transmission lines were built passing through the karst regions in southwestern China.This type of special landform seems to have an adverse effect on the aging of the sheds of the line suspension composite insulators,which may lead to unexpected flashover and line tripping.In order to find out the particularity of the aging characteristics of insulators operating in the karst regions,samples in operation were selected from both the karst regions and the flatlands.Hydrophobicity,amount of surface contamination,and contaminant composition of the sheds were studied,then a comparison of performance between the two was made,and the possible influencing factors that cause such differences were discussed.The results show that the overall aging of the sheds of the composite insulators operating at the karst regions is more aggravated,which is caused by the combined influence of factors including the special topography,climate,and pollution in the area.The strong wind crossing the col will bring about the mutual scraping on the edges and stress concentration at the root of the sheds,leaving scratches and root cracks;the infiltration from these rupture of acid liquid,if any,will accelerate the aging and corroding of the internal silicone rubber material;moreover,the carbonates enriched on the surface of the sheds will gradually transform into more corrosive sulfates in an acidic environment,leading to further deterioration and chalking of the sheds of the insulators.The research work in this paper can provide guidance for the current operation and maintenance of composite insulators in the karst areas,as well as having important reference values for the layout design and insulation configuration of transmission lines to be built across karst landforms in the future.展开更多
文摘Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.
基金This research was supported by the Jiangsu Planned Projects for Postdoctoral Research Funds(2021K534 C)the Heilongjiang Natural Science Foundation(No.QC2017035).
文摘This study presents a numerical method based on the surface temperature data and the ground temperature increase in Daqing for predicting temperature field distribution in the Binzhou Railway subgrade and analyzing the temporal and spatial distribution of freeze−thaw status of railway subgrade.The calibrated numerical method is applied to simulate the temperature field distribution and roadbed vibrational response of the railway subgrade with a thermal insulation layer at different seasons.The results show the following:(1)The thermal insulation layer can remarkably increase the soil temperature below it and maximum frost depth in the subgrade.(2)Thermal insulation can effectively reduce the subgrade vibration and protect it from frost damage.(3)Given that the strength requirements are met,the insulation layer should be buried as shallow as possible to effectively reduce the subgrade vibration response.The research findings provide theoretical support for the frost damage prevention of railway subgrades in seasonally frozen regions.
基金supported by Science and Technology Project of Southern Power Grid EHV Transmission Company of China(010700KK52190003).
文摘In recent years,more and more high-voltage overhead transmission lines were built passing through the karst regions in southwestern China.This type of special landform seems to have an adverse effect on the aging of the sheds of the line suspension composite insulators,which may lead to unexpected flashover and line tripping.In order to find out the particularity of the aging characteristics of insulators operating in the karst regions,samples in operation were selected from both the karst regions and the flatlands.Hydrophobicity,amount of surface contamination,and contaminant composition of the sheds were studied,then a comparison of performance between the two was made,and the possible influencing factors that cause such differences were discussed.The results show that the overall aging of the sheds of the composite insulators operating at the karst regions is more aggravated,which is caused by the combined influence of factors including the special topography,climate,and pollution in the area.The strong wind crossing the col will bring about the mutual scraping on the edges and stress concentration at the root of the sheds,leaving scratches and root cracks;the infiltration from these rupture of acid liquid,if any,will accelerate the aging and corroding of the internal silicone rubber material;moreover,the carbonates enriched on the surface of the sheds will gradually transform into more corrosive sulfates in an acidic environment,leading to further deterioration and chalking of the sheds of the insulators.The research work in this paper can provide guidance for the current operation and maintenance of composite insulators in the karst areas,as well as having important reference values for the layout design and insulation configuration of transmission lines to be built across karst landforms in the future.