A new class of support structures, called Periodic Structures, is introduced in this paper as a viable means for isolating the vibration transmitted from the sea waves to offshore platform structures through its legs....A new class of support structures, called Periodic Structures, is introduced in this paper as a viable means for isolating the vibration transmitted from the sea waves to offshore platform structures through its legs. A passive approach to reduce transmitted vibration generated by waves is presented. The approach utilizes the property of periodic structural components that create stop and pass bands. The stop band regions can be tailored to correspond to regions of the frequency spectra that contain harmonics of the wave frequency, attenuating the response in those regions. A periodic structural component is comprised of a repeating array of cells, which are themselves an assembly of elements. The elements may have differing material properties as well as geometric variations. For the purpose of this research, only geometric and material variations are considered and each cell is assumed to be identical. A periodic leg is designed in order to reduce transmitted vibration of sea waves. The effectiveness of the periodicity on the vibration levels of platform will be demonstrated theoretically. The theory governing the operation of this class of periodic structures is introduced using the transfer matrix method. The unique filtering characteristics of periodic structures are demonstrated as functions of their design parameters for structures with geometrical and material discontinuities, and determine the propagation factor by using the spectral finite element analysis and the effectiveness of design on the leg structure by changing the ratio of step length and area interface between the materials is demonstrated in order to find the propagation factor and frequency response.展开更多
This paper analyzes the seismicity in Bohai Sea,introducing a shape factor K to characterize the seismic risk distribution in sub-regions of the sea. Based on the seismic design ground motions for 46 platforms located...This paper analyzes the seismicity in Bohai Sea,introducing a shape factor K to characterize the seismic risk distribution in sub-regions of the sea. Based on the seismic design ground motions for 46 platforms located in the Bohai Sea,a statistical analysis was performed for different peak ground acceleration (PGA) ratios at two different probability levels. In accordance with the two-stage design method,a scheme of two seismic design levels is proposed,and two seismic design objectives are established respectively for the strength level earthquake and the ductility level earthquake. By analogy with and comparison to the Chinese seismic design code for buildings,it is proposed that the probability level for the strength level earthquake and ductility level earthquake have a return period of 200 and 1000 - 2500 years,respectively. The validity of these proposed values is discussed. Finally,the PGAs corresponding to these two probability levels are calculated for different sub-regions of the Bohai Sea.展开更多
文摘A new class of support structures, called Periodic Structures, is introduced in this paper as a viable means for isolating the vibration transmitted from the sea waves to offshore platform structures through its legs. A passive approach to reduce transmitted vibration generated by waves is presented. The approach utilizes the property of periodic structural components that create stop and pass bands. The stop band regions can be tailored to correspond to regions of the frequency spectra that contain harmonics of the wave frequency, attenuating the response in those regions. A periodic structural component is comprised of a repeating array of cells, which are themselves an assembly of elements. The elements may have differing material properties as well as geometric variations. For the purpose of this research, only geometric and material variations are considered and each cell is assumed to be identical. A periodic leg is designed in order to reduce transmitted vibration of sea waves. The effectiveness of the periodicity on the vibration levels of platform will be demonstrated theoretically. The theory governing the operation of this class of periodic structures is introduced using the transfer matrix method. The unique filtering characteristics of periodic structures are demonstrated as functions of their design parameters for structures with geometrical and material discontinuities, and determine the propagation factor by using the spectral finite element analysis and the effectiveness of design on the leg structure by changing the ratio of step length and area interface between the materials is demonstrated in order to find the propagation factor and frequency response.
基金the 2007 Special Research Project 8-55 of the Department of Finance and the State Science and Technology Support Project 2006BAC13B02
文摘This paper analyzes the seismicity in Bohai Sea,introducing a shape factor K to characterize the seismic risk distribution in sub-regions of the sea. Based on the seismic design ground motions for 46 platforms located in the Bohai Sea,a statistical analysis was performed for different peak ground acceleration (PGA) ratios at two different probability levels. In accordance with the two-stage design method,a scheme of two seismic design levels is proposed,and two seismic design objectives are established respectively for the strength level earthquake and the ductility level earthquake. By analogy with and comparison to the Chinese seismic design code for buildings,it is proposed that the probability level for the strength level earthquake and ductility level earthquake have a return period of 200 and 1000 - 2500 years,respectively. The validity of these proposed values is discussed. Finally,the PGAs corresponding to these two probability levels are calculated for different sub-regions of the Bohai Sea.