A new method which employs compressive sensing(CS) to reconstruct the sparse spectrum is designed and experimentally demonstrated. On the basis of CS theory, the simulation results indicate that the probability of rec...A new method which employs compressive sensing(CS) to reconstruct the sparse spectrum is designed and experimentally demonstrated. On the basis of CS theory, the simulation results indicate that the probability of reconstruction is high when the step of the sparsity adaptive matching pursuit algorithm is confirmed as 1. Contrastive analysis for four kinds of commonly used measurement matrices: part Hadamard, Bernoulli, Toeplitz and Circular matrix, has been conducted. The results illustrate that the part Hadamard matrix has better performance of reconstruction than the other matrices. The experimental system of the spectral compression reconstruction is mainly based on the digital micro-mirror device(DMD). The experimental results prove that CS can reconstruct sparse spectrum well under the condition of 50% sampling rate. The system error 0.0781 is obtained, which is defined by the average value of the 2-norm. Furthermore, the proposed method shows a dominant ability to discard redundancy.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61002013 and 11504435)the Natural Science Foundation of Hubei Province(No.2014CFA051)+1 种基金the Key Technology R&D Program of Hubei Province(No.2015BCE048)the Fundamental Research Funds for the Central Universities,South-Central University for Nationalities(Nos.CZY13034,CZW15055 and CZP17026)
文摘A new method which employs compressive sensing(CS) to reconstruct the sparse spectrum is designed and experimentally demonstrated. On the basis of CS theory, the simulation results indicate that the probability of reconstruction is high when the step of the sparsity adaptive matching pursuit algorithm is confirmed as 1. Contrastive analysis for four kinds of commonly used measurement matrices: part Hadamard, Bernoulli, Toeplitz and Circular matrix, has been conducted. The results illustrate that the part Hadamard matrix has better performance of reconstruction than the other matrices. The experimental system of the spectral compression reconstruction is mainly based on the digital micro-mirror device(DMD). The experimental results prove that CS can reconstruct sparse spectrum well under the condition of 50% sampling rate. The system error 0.0781 is obtained, which is defined by the average value of the 2-norm. Furthermore, the proposed method shows a dominant ability to discard redundancy.