Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical cha...Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.展开更多
This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control fram...This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.展开更多
Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issu...Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.展开更多
Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumpti...Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.展开更多
Nowadays urban traffic congestion becomes a major issue due to the increase in vehicles that lead to more commuting time,accidents,traffic violations,and high fuel consumption.Platooning is a good way to solve traffic...Nowadays urban traffic congestion becomes a major issue due to the increase in vehicles that lead to more commuting time,accidents,traffic violations,and high fuel consumption.Platooning is a good way to solve traffic congestion because it drives with a smaller inter-vehicle distance than human-driving.This paper proposes proactive platooning based on C-V2X(cellular vehicle-to-everything)to relieve congestion.Proactive platooning reduces the inter-vehicle distance and increases the throughput of signalized intersections through integrating the networked control platooning and computation-centralized platooning.Model and simulation experiments of proactive platooning were conducted to verify the impact of inter-vehicle distance on platooning latency,platooning safety,and traffic throughput.Simulation results show that the optimal inter-vehicle distance under proactive platooning is less than half of human-driving at a signalized intersection.展开更多
Through vehicle-to-vehicle(V2V)communication,autonomizing a vehicle platoon can significantly reduce the distance between vehicles,thereby reducing air resistance and improving road traffic efficiency.The gradual matu...Through vehicle-to-vehicle(V2V)communication,autonomizing a vehicle platoon can significantly reduce the distance between vehicles,thereby reducing air resistance and improving road traffic efficiency.The gradual maturation of platoon control technology is enabling vehicle platoons to achieve basic driving functions,thereby permitting large-scale vehicle platoon scheduling and planning,which is essential for industrialized platoon applications and generates significant economic benefits.Scheduling and planning are required in many aspects of vehicle platoon operation;here,we outline the advantages and challenges of a number of the most important applications,including platoon formation scheduling,lane-change planning,passing traffic light scheduling,and vehicle resource allocation.This paper’s primary objective is to integrate current independent platoon scheduling and planning techniques into an integrated architecture to meet the demands of large-scale platoon applications.To this end,we first summarize the general techniques of vehicle platoon scheduling and planning,then list the primary scenarios for scheduling and planning technique application,and finally discuss current challenges and future development trends in platoon scheduling and planning.We hope that this paper can encourage related platoon researchers to conduct more systematic research and integrate multiple platoon scheduling and planning technologies and applications.展开更多
Inspired by mobile edge computing(MEC),edge learning has gained a momentum by directly performing model training at network edge without sending massive data to a centralized data center.However,the quality of model t...Inspired by mobile edge computing(MEC),edge learning has gained a momentum by directly performing model training at network edge without sending massive data to a centralized data center.However,the quality of model training will be affected by the limited communication and computing resources of network edge.In this paper,how to improve the training performance of a federated learning system aided by intelligent reflecting surface(IRS)over vehicle platooning networks is studied,where multiple platoons train a shared federated learning model.Multi-platoon cooperation can alleviate the pressure of data processing caused by the limited computing resources of single platoon.Meanwhile,IRS can enhance the inter-platoon communication in a cost-effective and energy-efficient manner.Firstly,the federated learning optimization problem of maximizing the learning accuracy is formulated by jointing platoon scheduling,bandwidth allocation and phase shifts at the IRS to maximize the number of scheduled platoon.Specif-ically,in the proposed learning architecture each platoon updates the learning model with its own data and uploads it to the global model through IRS-based wireless networks.Then,a method based on sequential optimization algorithm(SOA)and a group-based optimization method are analyzed for single IRS aided and large-scale IRS aided commu-nication,respectively.Finally,a platoon scheduling scheme is designed based on the communication reliability and computing reliability of platoons.Simulation results demonstrate that large-scale IRS assisted communication can effectively improve the reliability of multi-user communication networks.The scheduling scheme based on learning reliability balances the communication performance and computing performance of platoons.展开更多
Autonomous platooning technology is regarded as one of the promising technologies for the future and the research is conducted actively.The autonomous platooning task generally requires highly complex computations so ...Autonomous platooning technology is regarded as one of the promising technologies for the future and the research is conducted actively.The autonomous platooning task generally requires highly complex computations so it is difficult to process only with the vehicle’s processing units.To solve this problem,there are many studies on task offloading technique which transfers complex tasks to their neighboring vehicles or computation nodes.However,the existing task offloading techniques which mainly use learning-based algorithms are difficult to respond to the real-time changing road environment due to their complexity.They are also challenging to process computation tasks within 100 ms which is the time limit for driving safety.In this paper,we propose a novel offloading scheme that can support autonomous platooning tasks being processed within the limit and ensure driving safety.The proposed scheme can handle computation tasks by considering the communication bandwidth,delay,and amount of computation.We also conduct simulations in the highway environment to evaluate the existing scheme and the proposed scheme.The result shows that our proposed scheme improves the utilization of nearby computing nodes,and the offloading tasks can be processed within the time for driving safety.展开更多
针对网联车队列系统易受到干扰和拒绝服务(Denial of service, DoS)攻击问题,提出一种外部干扰和随机DoS攻击作用下的网联车安全H∞队列控制方法.首先,采用马尔科夫随机过程,将网联车随机DoS攻击特性建模为一个随机通信拓扑切换模型,据...针对网联车队列系统易受到干扰和拒绝服务(Denial of service, DoS)攻击问题,提出一种外部干扰和随机DoS攻击作用下的网联车安全H∞队列控制方法.首先,采用马尔科夫随机过程,将网联车随机DoS攻击特性建模为一个随机通信拓扑切换模型,据此设计网联车安全队列控制协议.然后,采用线性矩阵不等式(Linear matrix inequality, LMI)技术计算安全队列控制器参数,并应用Lyapunov-Krasovskii稳定性理论,建立在外部扰动和随机DoS攻击下队列系统稳定性充分条件.在此基础上,分析得到该队列闭环系统的弦稳定性充分条件.最后,通过7辆车组成的队列系统对比仿真实验,验证该方法的优越性.展开更多
智能网联车辆队列行驶面临复杂的交通环境,所引发的时延、丢包等信息传输问题将导致队列车辆行驶稳定性降低而亟待解决.针对复杂交通环境,引入信息新鲜度(age of information, AoI)并提出了一种适应时变时延的智能网联车辆队列行驶稳定...智能网联车辆队列行驶面临复杂的交通环境,所引发的时延、丢包等信息传输问题将导致队列车辆行驶稳定性降低而亟待解决.针对复杂交通环境,引入信息新鲜度(age of information, AoI)并提出了一种适应时变时延的智能网联车辆队列行驶稳定性控制算法.该控制算法根据队列中多前车信息新鲜度来调整其对队列车辆车头间距影响的权重,同时依据时变时延信息预测队列中跟驰车辆与前车的车头间距,队列车辆按照请求周期向路侧单元(road side unit, RSU)实时发送请求,RSU依据车辆间距从小到大依次回应请求队列中的各个车辆,以控制其因时变时延可能造成的碰撞.数值仿真结果显示,相对智能驾驶员模型(intelligent driver model, IDM)而言,所提出的队列纵向稳定性控制算法具有更好的控制效果.针对时变时延发生概率20%的车车通信,队列车辆车头间距偏差的降低比例达6.4%,平均峰值信息新鲜度的降低比例达8.7%.同时,分析了队列车辆请求周期和回应请求车辆数量对队列纵向稳定性的影响,随着两者数值增加,控制算法给出的队列纵向稳定性分别呈现降低和增加的趋势.最后,实车测试了队列切出场景下车辆行驶数据和车辆接收信息的时延数据,将其引入数值仿真实验中.结果表明,车头间距偏差降低比例达15%.展开更多
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)。
文摘Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.
基金the financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.
基金supported in part by the National Natural Science Foundation of China (61973219,U21A2019,61873058)the Hainan Province Science and Technology Special Fund (ZDYF2022SHFZ105)。
文摘Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.
基金supported in part by Australian Research Council Discovery Early Career Researcher Award(DE210100273)。
文摘Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.
基金supported in part by China Scholarship Council,the National Natural Science Foundation Projects under Grant 61731004 and 61931005Beijing Natural Science foundation under Grant L202018。
文摘Nowadays urban traffic congestion becomes a major issue due to the increase in vehicles that lead to more commuting time,accidents,traffic violations,and high fuel consumption.Platooning is a good way to solve traffic congestion because it drives with a smaller inter-vehicle distance than human-driving.This paper proposes proactive platooning based on C-V2X(cellular vehicle-to-everything)to relieve congestion.Proactive platooning reduces the inter-vehicle distance and increases the throughput of signalized intersections through integrating the networked control platooning and computation-centralized platooning.Model and simulation experiments of proactive platooning were conducted to verify the impact of inter-vehicle distance on platooning latency,platooning safety,and traffic throughput.Simulation results show that the optimal inter-vehicle distance under proactive platooning is less than half of human-driving at a signalized intersection.
基金funded by the Shanghai Municipal Science and Technology Major Project(2018SHZDZX01)of Zhang Jiang Laboratory and Shanghai Center for Brain Science and Brain-Inspired TechnologyShanghai Rising Star Program(21QC1400900)Tongji–Westwell Autonomous Vehicle Joint Lab Project。
文摘Through vehicle-to-vehicle(V2V)communication,autonomizing a vehicle platoon can significantly reduce the distance between vehicles,thereby reducing air resistance and improving road traffic efficiency.The gradual maturation of platoon control technology is enabling vehicle platoons to achieve basic driving functions,thereby permitting large-scale vehicle platoon scheduling and planning,which is essential for industrialized platoon applications and generates significant economic benefits.Scheduling and planning are required in many aspects of vehicle platoon operation;here,we outline the advantages and challenges of a number of the most important applications,including platoon formation scheduling,lane-change planning,passing traffic light scheduling,and vehicle resource allocation.This paper’s primary objective is to integrate current independent platoon scheduling and planning techniques into an integrated architecture to meet the demands of large-scale platoon applications.To this end,we first summarize the general techniques of vehicle platoon scheduling and planning,then list the primary scenarios for scheduling and planning technique application,and finally discuss current challenges and future development trends in platoon scheduling and planning.We hope that this paper can encourage related platoon researchers to conduct more systematic research and integrate multiple platoon scheduling and planning technologies and applications.
基金supported in part by National Key Research and Development Project under Grant 2020YFB1807204in part by the National Natural Science Foundation of China under Grant U2001213,61971191+2 种基金in part by the Beijing Natural Science Foundation under Grant L201011in part by the Key project of Natural Science Foundation of Jiangxi Province under Grant 20202ACBL202006in part by the Science and Technology Foundation of Jiangxi Province(20202BCD42010).
文摘Inspired by mobile edge computing(MEC),edge learning has gained a momentum by directly performing model training at network edge without sending massive data to a centralized data center.However,the quality of model training will be affected by the limited communication and computing resources of network edge.In this paper,how to improve the training performance of a federated learning system aided by intelligent reflecting surface(IRS)over vehicle platooning networks is studied,where multiple platoons train a shared federated learning model.Multi-platoon cooperation can alleviate the pressure of data processing caused by the limited computing resources of single platoon.Meanwhile,IRS can enhance the inter-platoon communication in a cost-effective and energy-efficient manner.Firstly,the federated learning optimization problem of maximizing the learning accuracy is formulated by jointing platoon scheduling,bandwidth allocation and phase shifts at the IRS to maximize the number of scheduled platoon.Specif-ically,in the proposed learning architecture each platoon updates the learning model with its own data and uploads it to the global model through IRS-based wireless networks.Then,a method based on sequential optimization algorithm(SOA)and a group-based optimization method are analyzed for single IRS aided and large-scale IRS aided commu-nication,respectively.Finally,a platoon scheduling scheme is designed based on the communication reliability and computing reliability of platoons.Simulation results demonstrate that large-scale IRS assisted communication can effectively improve the reliability of multi-user communication networks.The scheduling scheme based on learning reliability balances the communication performance and computing performance of platoons.
基金This work was supported in part by the Chung-Ang University Research Scholarship Grants in 2021,and in part by R&D Program for Forest Science Technology(Project No.“2021338B10-2223-CD02)provided by Korea Forest Service(Korea Forestry Promotion Institute).
文摘Autonomous platooning technology is regarded as one of the promising technologies for the future and the research is conducted actively.The autonomous platooning task generally requires highly complex computations so it is difficult to process only with the vehicle’s processing units.To solve this problem,there are many studies on task offloading technique which transfers complex tasks to their neighboring vehicles or computation nodes.However,the existing task offloading techniques which mainly use learning-based algorithms are difficult to respond to the real-time changing road environment due to their complexity.They are also challenging to process computation tasks within 100 ms which is the time limit for driving safety.In this paper,we propose a novel offloading scheme that can support autonomous platooning tasks being processed within the limit and ensure driving safety.The proposed scheme can handle computation tasks by considering the communication bandwidth,delay,and amount of computation.We also conduct simulations in the highway environment to evaluate the existing scheme and the proposed scheme.The result shows that our proposed scheme improves the utilization of nearby computing nodes,and the offloading tasks can be processed within the time for driving safety.
文摘智能网联车辆队列行驶面临复杂的交通环境,所引发的时延、丢包等信息传输问题将导致队列车辆行驶稳定性降低而亟待解决.针对复杂交通环境,引入信息新鲜度(age of information, AoI)并提出了一种适应时变时延的智能网联车辆队列行驶稳定性控制算法.该控制算法根据队列中多前车信息新鲜度来调整其对队列车辆车头间距影响的权重,同时依据时变时延信息预测队列中跟驰车辆与前车的车头间距,队列车辆按照请求周期向路侧单元(road side unit, RSU)实时发送请求,RSU依据车辆间距从小到大依次回应请求队列中的各个车辆,以控制其因时变时延可能造成的碰撞.数值仿真结果显示,相对智能驾驶员模型(intelligent driver model, IDM)而言,所提出的队列纵向稳定性控制算法具有更好的控制效果.针对时变时延发生概率20%的车车通信,队列车辆车头间距偏差的降低比例达6.4%,平均峰值信息新鲜度的降低比例达8.7%.同时,分析了队列车辆请求周期和回应请求车辆数量对队列纵向稳定性的影响,随着两者数值增加,控制算法给出的队列纵向稳定性分别呈现降低和增加的趋势.最后,实车测试了队列切出场景下车辆行驶数据和车辆接收信息的时延数据,将其引入数值仿真实验中.结果表明,车头间距偏差降低比例达15%.