期刊文献+
共找到2,143篇文章
< 1 2 108 >
每页显示 20 50 100
Experimental study on the mechanism of flow blockage formation in fast reactor
1
作者 Wen-Hui Jin Song-Bai Cheng Xiao-Xing Liu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第6期171-182,共12页
Various sources of solid particles might exist in the coolant flow of a liquid metal cooled fast reactor(e.g.,through chemical interaction between the coolant and impurities,air,or water,through corrosion of structura... Various sources of solid particles might exist in the coolant flow of a liquid metal cooled fast reactor(e.g.,through chemical interaction between the coolant and impurities,air,or water,through corrosion of structural materials,or from damaged/molten fuel).Such particles may cause flow blockage accidents in a fuel assembly,resulting in a reduction in coolant flow,which potentially causes a local temperature rise in the fuel cladding,cladding failure,and fuel melt.To understand the blockage formation mechanism,in this study,a series of simulated experiments was conducted by releasing different solid particles from a release device into a reducer pipe using gravity.Through detailed analyses,the influence of various experimental parameters(e.g.,particle diameter,capacity,shape,and static friction coefficient,and the diameter and height of the particle release nozzle)on the blockage characteristics(i.e.,blockage probability and position)was examined.Under the current range of experimental conditions,the blockage was significantly influenced by the aforementioned parameters.The ratio between the particle diameter and outlet size of the reducer pipe might be one of the determining factors governing the occurrence of blockage.Specifically,increasing the ratio enhanced blockage(i.e.,larger probability and higher position within the reducer pipe).Increasing the particle size,particle capacity,particle static friction coefficient,and particle release nozzle diameter led to a rise in the blockage probability;however,increasing the particle release nozzle height had a downward influence on the blockage probability.Finally,blockage was more likely to occur in non-spherical particles case than that of spherical particles.This study provides a large experimental database to promote an understanding of the flow blockage mechanism and improve the validation process of fast reactor safety analysis codes. 展开更多
关键词 Liquid metal cooled fast reactor flow blockage Granular jamming Experimental study
下载PDF
An Experimental Observation of the Thermal Effects and NO Emissions during Dissociation and Oxidation of Ammonia in the Presence of a Bundle of Thermocouples in a Vertical Flow Reactor
2
作者 Samuel Ronald Holden Zhezi Zhang +2 位作者 Jian Gao Junzhi Wu Dongke Zhang 《Advances in Chemical Engineering and Science》 2023年第3期250-264,共15页
Ammonia (NH<sub>3</sub>) dissociation and oxidation in a cylindrical quartz reactor has been experimentally studied for various inlet NH<sub>3</sub> concentrations (5%, 10%, and 15%) and reacto... Ammonia (NH<sub>3</sub>) dissociation and oxidation in a cylindrical quartz reactor has been experimentally studied for various inlet NH<sub>3</sub> concentrations (5%, 10%, and 15%) and reactor temperatures between 700 K and 1000 K. The thermal effects during both NH<sub>3</sub> dissociation (endothermic) and oxidation (exothermic) were observed using a bundle of thermocouples positioned along the central axis of the quartz reactor, while the corresponding NH<sub>3</sub> conversions and nitrogen oxides emissions were determined by analysing the gas composition of the reactor exit stream. A stronger endothermic effect, as indicated by a greater temperature drop during NH<sub>3</sub> dissociation, was observed as the NH<sub>3</sub> feed concentration and reactor temperature increased. During NH<sub>3</sub> oxidation, a predominantly greater exothermic effect with increasing NH<sub>3</sub> feed concentration and reactor temperature was also evident;however, it was apparent that NH<sub>3</sub> dissociation occurred near the reactor inlet, preceding the downstream NH<sub>3</sub> and H<sub>2</sub> oxidation. For both NH<sub>3</sub> dissociation and oxidation, NH<sub>3</sub> conversion increased with increasing temperature and decreasing initial NH<sub>3</sub> concentration. Significant levels of NO<sub>X</sub> emissions were observed during NH<sub>3</sub> oxidation, which increased with increasing temperature. From the experimental results, it is speculated that the stainless-steel in the thermocouple bundle may have catalysed NH<sub>3</sub> dissociation and thus changed the reaction chemistry during NH<sub>3</sub> oxidation. 展开更多
关键词 AMMONIA NH3 Dissociation NH3 Oxidation flow reactor Nitrogen Oxides (NOX) Thermal Effects
下载PDF
Chemical Effects of CO2 Concentration on Soot Formation in Jet-stirred/Plug-flow Reactor
3
作者 张引弟 娄春 +2 位作者 刘德华 李勇 阮龙飞 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第11期1269-1283,共15页
煤烟形成在一个 jet-stirred/plug-flow 反应堆(JSR/PFR ) 与 CO2 增加数字地被调查在气压的 C2H4/O2/N2 反应堆(2.2 的 C/O 比率) 。更新的 Kazakov 机制在 premixed 火焰强调 O2/CO2 空气的效果而不是 O2/N2。煤烟形成为 C2H4/O2/N2 ... 煤烟形成在一个 jet-stirred/plug-flow 反应堆(JSR/PFR ) 与 CO2 增加数字地被调查在气压的 C2H4/O2/N2 反应堆(2.2 的 C/O 比率) 。更新的 Kazakov 机制在 premixed 火焰强调 O2/CO2 空气的效果而不是 O2/N2。煤烟形成为 C2H4/O2/N2 在 JSR/PFR 被考虑。在不同 C2H4/O2/CO2/N2 气氛的煤烟形成上的 CO2 增加的效果被学习,与化学效果上的特殊强调。模拟表演吸热的反应 CO2 +HCO + 哦在 CO2 的烃中介的减小是负责的通过氢氧根激进分子的增补形成的增加的燃烧。为通过有最最重要的链的上述前面的反应的 H 基的 CO2 的比赛分叉的反应 H +O2O + 哦显著地减少燃烧的燃料率。CO2 的化学效果在住处时间和公司的鼹鼠部分引起重要增加并且哦,在一些中介的重要减少(H, C2H2 ) ,多不的芳香的烃(哼, C6H6 和 C16H10,等等) 并且煤烟体积部分。CO2 增加愿望在一些 C3 的仅仅大约 5% ~ 20% 最大的鼹鼠部分导致减少到 C10 烃中介。敏感分析和反应路径分析结果证明那条 C2H4 反应路径和产品由于 CO2 增加被改变。 展开更多
关键词 CO2浓度 化学效应 烟灰 JET O2 CO2气氛 多环芳香烃 二氧化碳 羟基自由基
下载PDF
Energy analysis of rock plug thickness in karst tunnels based on non-associated flow rule and nonlinear failure criterion 被引量:6
4
作者 杨子汉 张睿 +1 位作者 许敬叔 杨小礼 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2940-2950,共11页
The geological hazards, such as water inrush and mud outburst, are easily induced by the high water pressure caverns ahead of a karst tunnel face. Therefore, it is a pivotal issue to determine the reserved thickness o... The geological hazards, such as water inrush and mud outburst, are easily induced by the high water pressure caverns ahead of a karst tunnel face. Therefore, it is a pivotal issue to determine the reserved thickness of rock plug during the construction of tunnels. The limit analysis principle is employed to analyze the safe thickness from the point of energy dissipation, and the nonlinear and non-associated characteristics of geotechnical materials are both considered. On the basis of a plane failure pattern of rock plug, the expressions of detaching curve and rock plug thickness are derived. The effect of each parameter on the safe thickness of rock plug is discussed in detail, which interprets the corresponding failure scope of rock plug. The obtained results indicate that the thickness of rock plug is highly influenced by the nonlinear dilatancy coefficient and the nonlinear coefficient. The proposed method is validated by a comparison of the calculated results with those of the engineering project of the "526 karst cavern" of Yunwushan tunnel. This proposed method can provide reference basis for the design and excavation of karst tunnels in the future. 展开更多
关键词 KARST tunnel water inrush safe thickness of rock plug UPPER BOUND THEOREM nonlinear failure criterion non-assoc flow RULE
下载PDF
Numerical Simulation on Gas-Solid Two-Phase Turbulent Flow in FCC Riser Reactors(Ⅰ) Turbulent Gas-Solid Flow-Reaction Model 被引量:3
5
作者 高金森 徐春明 +2 位作者 杨光华 郭印诚 林文漪 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1998年第1期16-24,共9页
Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,... Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,a three-dimensional turbulent gas-solid two-phase flow-reaction model for FCC riser reactors was devel-oped.The model took into account the gas-solid two-phase turbulent flows,inter-phase heat transfer,masstransfer,catalytic cracking reactions and their interrelated influence.The k-V-k_P two-phase turbulence modelwas employed and modified for the two-phase turbulent flow patterns with relatively high particle concentration.Boundary conditions for the flow-reaction model were given.Related numerical algorithm was formed and a nu-merical code was drawn up.Numerical modeling for commercial FCC riser reactors could be carried out with thepresented model. 展开更多
关键词 RISER reactor TURBULENT flow GAS-SOLID flow flow-reaction model numerical algorithm
下载PDF
Numerical Simulation on Gas-Solid Two-Phase Turbulent Flow in FCC Riser Reactors(Ⅱ) Numerical Simulation on the Gas-Solid Two-Phase Turbulent Flow 被引量:1
6
作者 高金森 徐春明 +2 位作者 林世雄 郭印诚 王希麟 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1998年第1期25-32,共8页
Numerical simulation on the flow,heat transfer and cracking reactions in commercial fluid catalyticcracking(FCC)riser reactors were carried out employing the developed turbulent gas-solid two-phase flow-reac-tion mode... Numerical simulation on the flow,heat transfer and cracking reactions in commercial fluid catalyticcracking(FCC)riser reactors were carried out employing the developed turbulent gas-solid two-phase flow-reac-tion model for FCC riser reactors given in Part Ⅰ of the present paper.Detailed information about the turbulentflow fields in the riser reactor obtained revealed the basic characteristics of the gas-solid two-phase turbulentflows when heat transfer and catalytic cracking reactions were co-existing in the riser.Results showed that thedistributions of the flow,the turbulence kinetic energy and the catalyst particle concentration are not uniform inthe axial,radial and tangential directions.The most complicated part of the riser reactor is the feed injectingzone.The complicated configuration of the turbulent gas-solid two-phase flows would exert a great influence onthe results of interphase heat transfer and cracking reactions. 展开更多
关键词 commercial RISER reactor flow-reaction model TURBULENT flow numerical simulation flow field
下载PDF
Effects of internals on phase holdup and backmixing in a slightly-expanded-bed reactor with gas–liquid concurrent upflow 被引量:1
7
作者 Kang Yu WeijieWang +2 位作者 Tao Zhang Yumei Yong Chao Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第10期2273-2283,共11页
Five different internals were designed,and their effects on phase holdup and backmixing were investigated in a gas–liquid concurrent upflow reactor where the spherical alumina packing particles of three diameters(3.0... Five different internals were designed,and their effects on phase holdup and backmixing were investigated in a gas–liquid concurrent upflow reactor where the spherical alumina packing particles of three diameters(3.0,4.5 and6.0 mm)were slightly expanded under the conditions of varied superficial gas velocities(6.77×10-2-3.61×10-1 m·s-1)and superficial liquid velocities(9.47×10-4-2.17×10-3 m·s-1).The experimental results show that the gas holdup increases with the superficial gas velocity and particle size,opposite to the variational trend of liquid holdup.When an internal component is installed amid the upflow reactor,a higher gas holdup,a less liquid holdup and a larger Peclet number characterizing the weaker backmixing are obtained compared to those in the bed without internals under the same operating conditions.Additionally,the minimal backmixing is observed in the reactor equipped with the internals with a novel multi-step design.Finally,empirical correlations were proposed for estimating gas holdup,liquid holdup and Peclet number with the relative deviations within 11%,12%and 25%,respectively. 展开更多
关键词 INTERNALS PHASE HOLDUP BACKMIXING Slightly-expanded-bed reactor Multiphase flow Hydrodynamics
下载PDF
Startup scheme optimization and flow instability of natural circulation lead-cooled fast reactor SNCLFR-100 被引量:3
8
作者 Wen-Shun Duan Ze-Ren Zou +1 位作者 Xiao Luo Hong-Li Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第11期191-200,共10页
Owing to the inherent instability of the natural circulation system,flow instability can easily occur during the operation of a natural circulation lead-cooled fast reactor,especially during the startup phase.A compre... Owing to the inherent instability of the natural circulation system,flow instability can easily occur during the operation of a natural circulation lead-cooled fast reactor,especially during the startup phase.A comprehensive startup scheme for SNCLFR-100,including primary and secondary circuits,is proposed in this paper.It references existing more mature startup schemes in various reactor types.It additionally considers the restriction conditions on the power increase in other schemes and the characteristics of lead-based coolant.On this basis,the multi-scale coupling code ATHLET-OpenFOAM was used to study the flow instability in the startup phase under different power-step amplitudes and power duration times.The results showed that obvious flow instability phenomena were found in the different startup schemes,such as the short-term backflow phenomenon of the core at the initial time of the startup.Moreover,an obvious increase in the flow rate and temperature to the peak value at the later stage of a continuous power rise was observed,as well as continuous oscillations before reaching a steady state.It was determined that the scheme with smaller power-step amplitude and a longer power duration time requires more time to start the reactor.Nevertheless,it will be more conducive to the safe and stable startup of the reactor. 展开更多
关键词 Natural circulation Lead-cooled fast reactor Startup scheme flow instability Multi-scale coupling
下载PDF
Optimal operating conditions of radial flow moving-bed reactors for isobutane dehydrogenation 被引量:1
9
作者 M.Farsi A.Jahanmiri M.R.Rahimpour 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第4期633-638,共6页
In this study, radial flow moving bed reactors for isobutane dehydrogenation have been modeled and simulated heterogeneously based on mass and energy conservation laws. The considered reaction networks in the model ar... In this study, radial flow moving bed reactors for isobutane dehydrogenation have been modeled and simulated heterogeneously based on mass and energy conservation laws. The considered reaction networks in the model are isobutene dehydrogenation as main reaction, and hydrogenolysis, propane dehydrogenation as well as coke formation as side reactions that all occur on the catalyst surface. Then, the process condition has been optimized to produce more isobutene under steady state condition. To prove the accuracy of the considered mathematical model and assumptions, simulation results are compared with the plant data. As a powerful method in the global optimization, the genetic algorithm has been used to optimize the considered objective function. The isobutane conversion and isobutene selectivity under optimal conditions are about 40.1% and 91%, respectively. 展开更多
关键词 isobutane dehydrogenation radial flow reactor heterogeneous modeling OPTIMIZATION
下载PDF
Flow Field Simulation on Double-Ring Radial Flow Reactor 被引量:1
10
作者 Jiang Hongbo Liang Yanhua 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2017年第2期104-113,共10页
Compared with the traditional radial flow reactors(RFRs), the double-ring RFRs possess advantages including lower pressure drop, shorter flow path and greater flow area. According to the Ergun's equation and the c... Compared with the traditional radial flow reactors(RFRs), the double-ring RFRs possess advantages including lower pressure drop, shorter flow path and greater flow area. According to the Ergun's equation and the continuity equation, a two-dimensional hydrodynamic model was established to describe the hydrodynamic behavior in the double-ring RFRs. The successive over-relaxation(SOR) method was applied to solve the two-dimensional hydrodynamic model. The flow assignment parameters(T_i) of mass flow in the inner channel to the outer catalyst bed and the inner catalyst bed were optimized by the Powell method. Simulations showed the trend of change in gas distribution uniformity along the axial direction and the weight hourly space velocity(WHSV) with the variation of reactor size. The model can be used to analyze the reasonability of dehydrogenation reactor design, and it can also provide quantitative reference for the design of new double-ring RFRs. 展开更多
关键词 double-ring RADIAL flow reactors HYDRODYNAMICS DEHYDROGENATION SIMULATION
下载PDF
Experimental Study on Combustion Characteristics of Pulverized Coal under Enriched-oxygen Condition by Entrained Flow Reactor 被引量:1
11
作者 Guo-Wei Liu Dao-Zhi Qu +1 位作者 Peng Dong Ru-Shan Bie 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第1期46-51,共6页
Four different pulverized coals have been used to study the effects of oxygen concentration on combustion characteristics under different enriched-oxygen conditions by entrained flow reactor experiments. The results s... Four different pulverized coals have been used to study the effects of oxygen concentration on combustion characteristics under different enriched-oxygen conditions by entrained flow reactor experiments. The results show that: with the increase of oxygen concentration, the ignition temperature of four coals greatly decreases and the low volatile coals decrease faster; with the increase of oxygen concentration, the ignition mode of pulverized coal has an obviously transformation from homogeneous ignition to heterogeneous ignition, and the corresponding oxygen concentrations are about 40% and 50%-60% respectively for bituminous coal and lignite, and both about 30% for lean coal and anthracite; with the increase of oxygen concentration, the optimal pulverized coal concentrations of bituminous coal and lignite increase firstly and then decrease, but for lean coal and anthracite, the optimal pulverized coal concentrations decrease slowly with the increase of oxygen concentration. 展开更多
关键词 enriched-oxygen condition combustion characteristics entrained flow reactor ignition mode
下载PDF
Numerical simulation of flow field and residence time of nanoparticles in a 1000-ton industrial multi-jet combustion reactor 被引量:1
12
作者 Jie Ju Xianjian Duan +3 位作者 Bismark Sarkodie Yanjie Hu Hao Jiang Chunzhong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第11期86-99,共14页
In this work,by establishing a three-dimensional physical model of a 1000-ton industrial multi-jet combustion reactor,a hexahedral structured grid was used to discretize the model.Combined with realizable k–εmodel,e... In this work,by establishing a three-dimensional physical model of a 1000-ton industrial multi-jet combustion reactor,a hexahedral structured grid was used to discretize the model.Combined with realizable k–εmodel,eddy-dissipation-concept,discrete-ordinate radiation model,hydrogen 19-step detailed reaction mechanism,air age user-defined-function,velocity field,temperature field,concentration field and gas arrival time in the reactor were numerically simulated.The Euler–Lagrange method combined with the discrete-phase-model was used to reveal the flow characteristics of particles in the reactor,and based on this,the effects of the reactor aspect ratios,central jet gas velocity and particle size on the flow field characteristics and particle back-mixing degree in the reactor were investigated.The results show that with the decrease of aspect ratio in the combustion reactors,the velocity and temperature attenuation in the reactor are intensified,the vortex phenomenon is aggravated,and the residence time distribution of nanoparticles is more dispersed.With the increase in the central jet gas velocities in reactors,the vortex lengthens along the axis,the turbulence intensity increases,and the residence time of particles decreases.The back-mixing degree and residence time of particles in the reactor also decrease with the increase in particle size.The simulation results can provide reference for the structural regulation of nanoparticles and the structural design of combustion reactor in the process of gas combustion synthesis. 展开更多
关键词 Combustion reactor Residence time distribution Particle flow trajectory Back-mixing Numerical simulation
下载PDF
MHD Stability Analysis and Flow Controls of Liquid Metal Free Surface Film Flows as Fusion Reactor PFCs 被引量:1
13
作者 张秀杰 潘传杰 许增裕 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第12期1204-1214,共11页
Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the ... Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity(V), the chute width(W) and the inlet film thickness(d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field,especially small radial magnetic fields(Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved. 展开更多
关键词 liquid metal MHD stability flow control film flows magnetic fusion reactor
下载PDF
Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling 被引量:1
14
作者 梅书哲 王权 +8 位作者 郝美兰 徐健凯 肖红领 冯春 姜丽娟 王晓亮 刘峰奇 徐现刚 王占国 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第9期82-86,共5页
Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform perfor... Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform performanee, the flow field and ternperature field in a GaN-MOCVD reactor are investigated by modeling and simulating. To make the simulation results more consistent with the actual situation, the gases in the reactor are considered to be compressible, making it possible to investigate the distributions of gas density and pressure in the reactor. The computational fluid dynamics method is used to stud,v the effects of inlet gas flow velocity, pressure in the reactor, rotational speed of graphite susceptor, and gases used in the growth, which has great guiding~ significance for the growth of GaN fihn materials. 展开更多
关键词 MOCVD flow Field and Temperature Field in GaN-MOCVD reactor Based on Computational Fluid Dynamics Modeling GAN
下载PDF
Numerical Investigation on the Flow and Temperature Fields in an Inductively Coupled Plasma Reactor 被引量:1
15
作者 吴彬 林烈 +1 位作者 张秀杰 吴承康 《Plasma Science and Technology》 SCIE EI CAS CSCD 2000年第6期565-571,共7页
This paper gives a numerical study on the flow and temperature fields in an induced plasma reactor, which worked in 0.5 ATM with air as a working gas. We employed a two-dimensional mode of an inductively coupled plas... This paper gives a numerical study on the flow and temperature fields in an induced plasma reactor, which worked in 0.5 ATM with air as a working gas. We employed a two-dimensional mode of an inductively coupled plasma to calculate the temperature and flow field of the reactor as well as the generator. The algorithm is based on the solutions of the two-dimensional continuity, momentum, and energy equations in term of vorticity, stream function and enthalpy. An upwind finite-difference scheme was adopted to solve those equations with appropriate boundary conditions. The computed results show that there is a flat region with little parameter change in the reactor, that the diameter of the region is not much larger than that of the generator and that a deep change of parameter exists in the outer side of the region. 展开更多
关键词 RE Numerical Investigation on the flow and Temperature Fields in an Inductively Coupled Plasma reactor
下载PDF
CFD and experimental investigations on the micromixing performance of single countercurrent-flow microchannel reactor 被引量:3
16
作者 Kunpeng Cheng Chunyu Liu +1 位作者 Tianyu Guo Lixiong Wen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第5期1079-1088,共10页
Microchannel reactors are widely used in different fields due to their intensive micromixing and, thus, high masstransfer efficiency. In this work, a single countercurrent-flow microchannel reactor(S-CFMCR) at the siz... Microchannel reactors are widely used in different fields due to their intensive micromixing and, thus, high masstransfer efficiency. In this work, a single countercurrent-flow microchannel reactor(S-CFMCR) at the size of ~1 mm was developed by steel micro-capillary and laser drilling technology. Utilizing the Villermaux/Dushman parallel competing reaction, numerical and experimental studies were carried out to investigate the micromixing performance(expressed as the segregation index XS) of liquids inside S-CFMCR at the low flow velocity regime.The effects of various operating conditions and design parameters of S-CFMCR, e.g., inlet Reynolds number(Re),volumetric flow ratio(R), inlet diameter(d) and outlet length(L), on the quality of micromixing were studied qualitatively. It was found that the micromixing efficiency was enhanced with increasing Re, but weakened with the increase of R. Moreover, d and L also have a significant influence on micromixing. CFD results were in good agreement with experimental data. In addition, the visualization of velocity magnitude, turbulent kinetic energy and concentration distributions of various ions inside S-CFMCR was illustrated as well. Based on the incorporation model, the estimated minimum micromixing time tmof S-CFMCR is ~2 × 10-4s. 展开更多
关键词 SINGLE countercurrent-flow MICROCHANNEL reactor MICROMIXING performance CFD Villermaux/Dushman reaction
下载PDF
Modeling of a Reverse Flow Reactor for Methanol Synthesis Modeling of a Reverse Flow Reactor for Methanol Synthesis 被引量:1
17
作者 陈晓春 李成岳 P.L.Silveston 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第1期9-14,共6页
An accurate one-dimensional,heterogeneous model taking account of axial dispersion and heat transfer to the reactor wall,and heat conduction through the reactor wall for methanol synthesis in a bench scale reactor un... An accurate one-dimensional,heterogeneous model taking account of axial dispersion and heat transfer to the reactor wall,and heat conduction through the reactor wall for methanol synthesis in a bench scale reactor under periodic reversal of flow direction is presented.Adjustable parameters in this model are the effectiveness factors for each of the three reactions occurring in the synthesis and a factor for the bed to wall heat transfer coefficient correlation.Experimental data were used to evaluate these parameters and reasonable values of these parameters were obtained.The model was found to closely predict the reactor performance under a wide range of parameters were obtained.The model was found to closely predict the reactor preformance under a wide range of operating conditions,such as carbon oxide concentrations,volumetric flow rate,and cyclic period. 展开更多
关键词 甲醇 合成 反应器 模型化 流向变换 周期操作
下载PDF
Precision Synthesis of a Long-Chain Silane Coupling Agent Using Micro Flow Reactors and Its Application in Dentistry 被引量:2
18
作者 Kiyomi Fuchigami Hidefumi Fujimura +1 位作者 Mitsuji Teramae Toshiyuki Nakatsuka 《Journal of Encapsulation and Adsorption Sciences》 2016年第1期35-46,共12页
In dentistry, a wide range of materials is available for restorative treatment;a typical product of such restorative materials mainly consists of radically polymerizable monomer(s) and inorganic filler(s) (for added p... In dentistry, a wide range of materials is available for restorative treatment;a typical product of such restorative materials mainly consists of radically polymerizable monomer(s) and inorganic filler(s) (for added physical strength), as well as a surface modifier (e.g. silane coupling agent) for improved affinity between monomer and filler. It is favorable to use an optimal surface modifier depending on the respective restorative materials. However, commercially available surface modifiers, which are synthesized by the ton, are not always suited for what is required for properties of the many different dental restorative materials. As a potential solution to such a problem, we focused on the latest technology, “micro flow reactors” that enabled an on-demand low-volume synthesis of many types of surface modifiers. Using micro reaction fields of such flow reactors, we synthesized a novel long-chain silane coupling agent. Compared to the control system synthesized using a conventional reaction flask, the novel system enabled significant reduction in reaction time without inducing any major side reactions. A dental composite resin that was treated with the novel coupling agent exhibited higher toughness, suggesting that such a silane coupling agent was an effective surface modifier. 展开更多
关键词 Micro flow reactor Precision Synthesis Composite Resins Molecular Design Urethanization HYDROSILYLATION
下载PDF
Numerical Simulation of Unsteady-State Flowsin Bubble Column Reactors 被引量:1
19
作者 张金利 包佳琨 +2 位作者 李韡 胡瑞杰 韩振亭 《Transactions of Tianjin University》 EI CAS 2003年第4期283-288,共6页
Unsteady-state operation has been widely applied in chemical engineering, such as optimizing a process, increasing yield and saving energy, etc. But the knowledge of the flow characteristics in bubble column reactors(... Unsteady-state operation has been widely applied in chemical engineering, such as optimizing a process, increasing yield and saving energy, etc. But the knowledge of the flow characteristics in bubble column reactors(BCRs) under unsteady state control is far from enough. In order to study the flow structures in this operation, the volume of fluid (VOF) model and the standard k-ε model to simulate the evolution of gas-liquid flow in BCRs under the start-up state are combined. For both the symmetry and asymmetry flow, the layout of the gas-inlets, the gas-in velocity, the liquid viscosity and the aspect ratio of the BCR all have effects on the liquid velocity distribution. The simulation results could provide some information for the design and scale-up of the BCRs. 展开更多
关键词 数字仿真 不稳定流动 BCRs 泡沫圆柱反应器 生物化学工程
下载PDF
An optimization method for enhancement of gas–liquid mass transfer in a bubble column reactor based on the entropy generation extremum principle 被引量:2
20
作者 Chao Zhang Youzhi Liu +3 位作者 Weizhou Jiao Hongyan Shen Xigang Yuan Shengkun Jia 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期83-88,共6页
In this study,an optimization method is proposed to enhance the gas–liquid mass transfer in bubble column reactor based on the entropy generation extremum principle.The mass transfer–induced entropy generation can b... In this study,an optimization method is proposed to enhance the gas–liquid mass transfer in bubble column reactor based on the entropy generation extremum principle.The mass transfer–induced entropy generation can be maximized with the increase of mass transfer rate,based on which the velocity field can be optimized.The oxygen gas–liquid mass transfer is the major rate–limiting step of the toluene emissions biodegradation process in bubble column reactor,so the entropy generation due to oxygen mass transfer is used as the objective function,and the conservation equations of the gas–liquid flow and species concentration are taken as constraints.This optimization problem is solved by the calculus of variations,the optimal liquid flow pattern is obtained and the relationship of the maximum mass transfer enhancement on viscous dissipation is revealed,which can be used to improve the design of internal structure of the bubble column reactor. 展开更多
关键词 Entropy generation Bubble column reactor OPTIMIZATION BIODEGRADATION flow field
下载PDF
上一页 1 2 108 下一页 到第
使用帮助 返回顶部