The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historic...The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historical and real-time traffic data,in which information fusion model and trafficprediction model are used to improve the information accuracy.Then,dynamic programming combined with equivalent con-sumption minimization strategy is used to compute an optimalsolution for real-time energy management.The solution is thereference for PHEV energy management control along the route.To improve the system's ability of handling changing situation,the study further explores predictive control model in the real-time control of the energy.A simulation is performed to modelPHEV under above energy control strategy with route preview.The results show that the average fuel consumption of PHEValong the previewed route with model predictive control(MPC)strategy can be reduced compared with optimal strategy andbase control strategy.展开更多
In order to achieve the improvement of the driving comfort and energy efficiency,an new e-CVT flexible full hybrid electric system(E2FHS) is proposed,which uses an integrated main drive motor and generator to take the...In order to achieve the improvement of the driving comfort and energy efficiency,an new e-CVT flexible full hybrid electric system(E2FHS) is proposed,which uses an integrated main drive motor and generator to take the place of the original automatic or manual transmission to realize the functions of continuously variable transmission(e-CVT).The design and prototype realization of the E2FHS system for a plug-in hybrid vehicle(PHEV) is performed.In order to analyze and optimize the parameters and the power flux between different parts of the E2FHS,simulation software is developed.Especially,in order to optimize the performance of the energy economy improvement of the E2FHS,the effect of the different energy management controllers is investigated,and an adaptive online-optimal energy management controller for the E2FHS is built and validated by the prototype PHEV.展开更多
In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is d...In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is divided into power mode and economy mode. Energy management strategy designing methods of power mode and economy mode are proposed. Maximum velocity, acceleration performance and fuel consumption are simulated during the CS period in the AVL CRUISE simulation environment. The simulation results indicate that the maximum velocity and acceleration time of the power mode are better than those in the economy mode. Fuel consumption of the economy mode is better than that in the power mode. Fuel consumption of PHEV during the CS period is further improved by using the methods proposed in this paper, and this is meaningful for research and development of PHEV.展开更多
A variable parameter self-adaptive control strategy based on driving condition identification is proposed to take full advantage of the fuel saving potential of the plug-in hybrid electric bus(PHEB).Firstly,the princi...A variable parameter self-adaptive control strategy based on driving condition identification is proposed to take full advantage of the fuel saving potential of the plug-in hybrid electric bus(PHEB).Firstly,the principal component analysis(PCA)and the fuzzy c-means clustering(FCM)algorithm is used to construct the comprehensive driving cycle,congestion driving cycle,urban driving cycle and suburban driving cycle of Chinese urban buses.Secondly,an improved particle swarm optimization(IPSO)algorithm is proposed,and is used to optimize the control parameters of PHEB under different driving cycles,respectively.Then,the variable parameter self-adaptive control strategy based on driving condition identification is given.Finally,for an actual running vehicle,the driving condition is identified by relevance vector machine(RVM),and the corresponding control parameters are selected to control the vehicle.The simulation results show that the fuel consumption of using the variable parameter self-adaptive control strategy is reduced by 4.2% compared with that of the fixed parameter control strategy,and the feasibility of the variable parameter self-adaptive control strategy is verified.展开更多
Recently,plug?in hybrid electric bus has been one of the energy?e cient solutions for urban transportation. However,the current vehicle e ciency is far from optimum,because the unpredicted external driving conditions ...Recently,plug?in hybrid electric bus has been one of the energy?e cient solutions for urban transportation. However,the current vehicle e ciency is far from optimum,because the unpredicted external driving conditions are di cult to be obtained in advance. How to further explore its fuel?saving potential under the complicated city bus driving cycles through an e cient control strategy is still a hot research issue in both academic and engineering area. To realize an e cient coupling driving operation of the hybrid powertrain,a novel coupling driving control strategy for plug?in hybrid electric bus is presented. Combined with the typical feature of a city?bus?route,the fuzzy logic inference is employed to quantify the driving intention,and then to determine the coupling driving mode and the gear?shifting strategy. Considering the response deviation problem in the execution layer,an adaptive robust controller for electric machine is designed to respond to the transient torque demand,and instantaneously compensate the response delay and the engine torque fluctuation. The simulations and hard?in?loop tests with the actual data of two typical driving conditions from the real?world city?bus?route are carried out,and the results demonstrate that the pro?posed method could guarantee the hybrid powertrain to track the actual torque demand with 10.4% fuel economy improvement. The optimal fuel economy can be obtained through the optimal combination of working modes. The fuel economy of plug?in hybrid electric bus can be significantly improved by the proposed control scheme without loss of drivability.展开更多
In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, ba...In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, based on simulations with three different driving cycles. The investigated hybrid energy storage topologies are an energy optimized lithium-ion battery (HE) in combination with an Electrical Double-Layer Capacitor (EDLC) system, in combination with a power optimized lithium-ion battery (HP) system or in combination with a Lithium-ion Capacitor (LiCap) system, that act as a Peak Power System. From the simulation results it was observed that hybridization of the HE lithium-ion based energy storage system resulted from the three topologies in an increased overall energy efficiency of the RESS, in an extended all electric range of the PHEV and in a reduced average current through the HE battery. The lowest consumption during the three driving cycles was obtained for the HE-LiCap topology, where fuel savings of respectively 6.0%, 10.3% and 6.8% compared with the battery stand-alone system were achieved. The largest extension of the range was achieved for the HE-HP configuration (17% based on FTP-75 driving cycle). HP batteries however have a large internal resistance in comparison to EDLC and LiCap systems, which resulted in a reduced overall energy efficiency of the hybrid RESS. Additionally, it was observed that the HP and LiCap systems both offer significant benefits for the integration of a peak power system in the drivetrain of a Plug-in Hybrid Electric Vehicle due to their low volume and weight in comparison to that of the EDLC system.展开更多
'随着各家车企都在新能源领域进行着自己的努力,似乎再不行动的汽车品牌就会被这个时代抛弃。日前,在中国已很少见却在欧洲混得风生水起的欧宝推出了旗下首款插电混合动力车型——Grandland X Plug-in Hybrid4,正如其名称所写的那样...'随着各家车企都在新能源领域进行着自己的努力,似乎再不行动的汽车品牌就会被这个时代抛弃。日前,在中国已很少见却在欧洲混得风生水起的欧宝推出了旗下首款插电混合动力车型——Grandland X Plug-in Hybrid4,正如其名称所写的那样,新车型是基于Grandland X打造而来。'展开更多
PHEVs (passenger plug-in hybrid electric vehicles) have shown significant fuel reduction potential. Furthermore, PHEVs can also improve longitudinal vehicle dynamics with respect to acceleration and engine elasticit...PHEVs (passenger plug-in hybrid electric vehicles) have shown significant fuel reduction potential. Furthermore, PHEVs can also improve longitudinal vehicle dynamics with respect to acceleration and engine elasticity. The objective of this study is to investigate potential of concurrent optimization of fuel efficiency and driving performance. For the studies, a backward vehicle model for a parallel PHEV was designed, where the power flow is calculated from the wheels to the propulsion units, the conventional ICE (internal combustion engine) and the EMG (electric motor/generator) unit. The hybrid drive train is according to a P2 layout, consequently the EMG is situated between the shifting clutch and the ICE. The implemented operation strategy distributes the power to both propulsion units depending on the vehicle speed, requested driving torque, the battery's SOC (state of charge) and SOP (state of power). Additional information, such as the slope of the road, can be taken into account by the operation strategy. In the paper, the fuel saving potential as well as the longitudinal dynamics change of different PHEV configurations is presented as a function of battery capacity and EMG power. Consequently, applicable hybrid components can be defined. By using additional information of the environment like various sensor data, road slope amongst others, the fuel saving potential can be improved even more. By studying the dynamic model, the overall results of the backward model are confirmed. In conclusion, this study shows that it is possible to concurrently reduce fuel consumption and increase driving performance in PHEVs. The potential depends strongly on the configuration of the electric components and the implemented operation strategy. Consequently, the hybrid system configuration has to be chosen carefully and aligned to the vehicle performance.展开更多
This study is laser focused on the simulation of fuel consumption and fuel economy label parameters of plug-in hybrid electric vehicles.While fuel economy is a key factor in the design of plug-in hybrid electric vehic...This study is laser focused on the simulation of fuel consumption and fuel economy label parameters of plug-in hybrid electric vehicles.While fuel economy is a key factor in the design of plug-in hybrid electric vehicles,a fuel economy label can educate customers about the economic advantage of purchasing a particular car.The fuel economy label of a PHEV consists of parameters like driving range,electrical energy consumption,fuel economy for city,highway,and combined use,battery recharge time,and fuel consumption rates.The study used an inverse function model of an artificial neural network to simulate and calculate the parameters of the fuel economy labels of PHEVs.Firstly,the selected parameters of the fuel economy label of plug-in hybrid electric vehicles were used to develop a single output model.The output variable of the single output model was then merged with dummy functions to form input variables for the inverse function model.The output variables simulated were engine size in litres;estimated driving range when the battery is fully charged in km,battery recharged time in hours,city fuel consumption(L/100 km),highway fuel consumption(L/100 km),combined fuel consumption(L/100 km),estimated driving range when the tank is full,carbon dioxide(CO_(2))emission in grams/km,electric motor power in kW,number of cylinders,and electrical charges consumed in kWh/100 km.Different cases of input variables were considered for the inverse function model.The accuracy of the model was 29.1 times greater than that of the conventional inverse artificial neural network model.展开更多
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd...The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.展开更多
The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,...The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,the roles of individual metals,coordination atoms,and their synergy effect on the electroanalytic performance remain unclear.Therefore,in this work,a series of 2DMOFs with different metals and coordinating atoms are systematically investigated as electrocatalysts for ammonia synthesis using density functional theory calculations.For a specific metal,a proper metal-intermediate atoms p-d orbital hybridization interaction strength is found to be a key indicator for their NRR catalytic activities.The hybridization interaction strength can be quantitatively described with the p-/d-band center energy difference(Δd-p),which is found to be a sufficient descriptor for both the p-d hybridization strength and the NRR performance.The maximum free energy change(ΔG_(max))andΔd-p have a volcanic relationship with OsC_(4)(Se)_(4)located at the apex of the volcanic curve,showing the best NRR performance.The asymmetrical coordination environment could regulate the band structure subtly in terms of band overlap and positions.This work may shed new light on the application of orbital engineering in electrocatalytic NRR activity and especially promotes the rational design for SACs.展开更多
In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hy...In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry.展开更多
文摘The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historical and real-time traffic data,in which information fusion model and trafficprediction model are used to improve the information accuracy.Then,dynamic programming combined with equivalent con-sumption minimization strategy is used to compute an optimalsolution for real-time energy management.The solution is thereference for PHEV energy management control along the route.To improve the system's ability of handling changing situation,the study further explores predictive control model in the real-time control of the energy.A simulation is performed to modelPHEV under above energy control strategy with route preview.The results show that the average fuel consumption of PHEValong the previewed route with model predictive control(MPC)strategy can be reduced compared with optimal strategy andbase control strategy.
基金Project(2007CB209707) supported by the National Basic Research Program of China
文摘In order to achieve the improvement of the driving comfort and energy efficiency,an new e-CVT flexible full hybrid electric system(E2FHS) is proposed,which uses an integrated main drive motor and generator to take the place of the original automatic or manual transmission to realize the functions of continuously variable transmission(e-CVT).The design and prototype realization of the E2FHS system for a plug-in hybrid vehicle(PHEV) is performed.In order to analyze and optimize the parameters and the power flux between different parts of the E2FHS,simulation software is developed.Especially,in order to optimize the performance of the energy economy improvement of the E2FHS,the effect of the different energy management controllers is investigated,and an adaptive online-optimal energy management controller for the E2FHS is built and validated by the prototype PHEV.
文摘In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is divided into power mode and economy mode. Energy management strategy designing methods of power mode and economy mode are proposed. Maximum velocity, acceleration performance and fuel consumption are simulated during the CS period in the AVL CRUISE simulation environment. The simulation results indicate that the maximum velocity and acceleration time of the power mode are better than those in the economy mode. Fuel consumption of the economy mode is better than that in the power mode. Fuel consumption of PHEV during the CS period is further improved by using the methods proposed in this paper, and this is meaningful for research and development of PHEV.
基金Supported by China Automobile Test Cycle Development Project(CATC2015)
文摘A variable parameter self-adaptive control strategy based on driving condition identification is proposed to take full advantage of the fuel saving potential of the plug-in hybrid electric bus(PHEB).Firstly,the principal component analysis(PCA)and the fuzzy c-means clustering(FCM)algorithm is used to construct the comprehensive driving cycle,congestion driving cycle,urban driving cycle and suburban driving cycle of Chinese urban buses.Secondly,an improved particle swarm optimization(IPSO)algorithm is proposed,and is used to optimize the control parameters of PHEB under different driving cycles,respectively.Then,the variable parameter self-adaptive control strategy based on driving condition identification is given.Finally,for an actual running vehicle,the driving condition is identified by relevance vector machine(RVM),and the corresponding control parameters are selected to control the vehicle.The simulation results show that the fuel consumption of using the variable parameter self-adaptive control strategy is reduced by 4.2% compared with that of the fixed parameter control strategy,and the feasibility of the variable parameter self-adaptive control strategy is verified.
基金Supported by National Natural Science Foundation of China(Grant No.51605243)National Key Science and Technology Projects of China(Grant No.2014ZX04002041)1-class General Financial Grant from the China Postdoctoral Science Foundation(Grant No.2016M590094)
文摘Recently,plug?in hybrid electric bus has been one of the energy?e cient solutions for urban transportation. However,the current vehicle e ciency is far from optimum,because the unpredicted external driving conditions are di cult to be obtained in advance. How to further explore its fuel?saving potential under the complicated city bus driving cycles through an e cient control strategy is still a hot research issue in both academic and engineering area. To realize an e cient coupling driving operation of the hybrid powertrain,a novel coupling driving control strategy for plug?in hybrid electric bus is presented. Combined with the typical feature of a city?bus?route,the fuzzy logic inference is employed to quantify the driving intention,and then to determine the coupling driving mode and the gear?shifting strategy. Considering the response deviation problem in the execution layer,an adaptive robust controller for electric machine is designed to respond to the transient torque demand,and instantaneously compensate the response delay and the engine torque fluctuation. The simulations and hard?in?loop tests with the actual data of two typical driving conditions from the real?world city?bus?route are carried out,and the results demonstrate that the pro?posed method could guarantee the hybrid powertrain to track the actual torque demand with 10.4% fuel economy improvement. The optimal fuel economy can be obtained through the optimal combination of working modes. The fuel economy of plug?in hybrid electric bus can be significantly improved by the proposed control scheme without loss of drivability.
文摘In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, based on simulations with three different driving cycles. The investigated hybrid energy storage topologies are an energy optimized lithium-ion battery (HE) in combination with an Electrical Double-Layer Capacitor (EDLC) system, in combination with a power optimized lithium-ion battery (HP) system or in combination with a Lithium-ion Capacitor (LiCap) system, that act as a Peak Power System. From the simulation results it was observed that hybridization of the HE lithium-ion based energy storage system resulted from the three topologies in an increased overall energy efficiency of the RESS, in an extended all electric range of the PHEV and in a reduced average current through the HE battery. The lowest consumption during the three driving cycles was obtained for the HE-LiCap topology, where fuel savings of respectively 6.0%, 10.3% and 6.8% compared with the battery stand-alone system were achieved. The largest extension of the range was achieved for the HE-HP configuration (17% based on FTP-75 driving cycle). HP batteries however have a large internal resistance in comparison to EDLC and LiCap systems, which resulted in a reduced overall energy efficiency of the hybrid RESS. Additionally, it was observed that the HP and LiCap systems both offer significant benefits for the integration of a peak power system in the drivetrain of a Plug-in Hybrid Electric Vehicle due to their low volume and weight in comparison to that of the EDLC system.
文摘PHEVs (passenger plug-in hybrid electric vehicles) have shown significant fuel reduction potential. Furthermore, PHEVs can also improve longitudinal vehicle dynamics with respect to acceleration and engine elasticity. The objective of this study is to investigate potential of concurrent optimization of fuel efficiency and driving performance. For the studies, a backward vehicle model for a parallel PHEV was designed, where the power flow is calculated from the wheels to the propulsion units, the conventional ICE (internal combustion engine) and the EMG (electric motor/generator) unit. The hybrid drive train is according to a P2 layout, consequently the EMG is situated between the shifting clutch and the ICE. The implemented operation strategy distributes the power to both propulsion units depending on the vehicle speed, requested driving torque, the battery's SOC (state of charge) and SOP (state of power). Additional information, such as the slope of the road, can be taken into account by the operation strategy. In the paper, the fuel saving potential as well as the longitudinal dynamics change of different PHEV configurations is presented as a function of battery capacity and EMG power. Consequently, applicable hybrid components can be defined. By using additional information of the environment like various sensor data, road slope amongst others, the fuel saving potential can be improved even more. By studying the dynamic model, the overall results of the backward model are confirmed. In conclusion, this study shows that it is possible to concurrently reduce fuel consumption and increase driving performance in PHEVs. The potential depends strongly on the configuration of the electric components and the implemented operation strategy. Consequently, the hybrid system configuration has to be chosen carefully and aligned to the vehicle performance.
文摘This study is laser focused on the simulation of fuel consumption and fuel economy label parameters of plug-in hybrid electric vehicles.While fuel economy is a key factor in the design of plug-in hybrid electric vehicles,a fuel economy label can educate customers about the economic advantage of purchasing a particular car.The fuel economy label of a PHEV consists of parameters like driving range,electrical energy consumption,fuel economy for city,highway,and combined use,battery recharge time,and fuel consumption rates.The study used an inverse function model of an artificial neural network to simulate and calculate the parameters of the fuel economy labels of PHEVs.Firstly,the selected parameters of the fuel economy label of plug-in hybrid electric vehicles were used to develop a single output model.The output variable of the single output model was then merged with dummy functions to form input variables for the inverse function model.The output variables simulated were engine size in litres;estimated driving range when the battery is fully charged in km,battery recharged time in hours,city fuel consumption(L/100 km),highway fuel consumption(L/100 km),combined fuel consumption(L/100 km),estimated driving range when the tank is full,carbon dioxide(CO_(2))emission in grams/km,electric motor power in kW,number of cylinders,and electrical charges consumed in kWh/100 km.Different cases of input variables were considered for the inverse function model.The accuracy of the model was 29.1 times greater than that of the conventional inverse artificial neural network model.
基金The Qian Xuesen Youth Innovation Foundation from China Aerospace Science and Technology Corporation(Grant Number 2022JY51).
文摘The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.
基金supported by the National Natural Science Foundation of China(21905253,51973200,and 52122308)the Natural Science Foundation of Henan(202300410372)the National Supercomputing Center in Zhengzhou
文摘The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,the roles of individual metals,coordination atoms,and their synergy effect on the electroanalytic performance remain unclear.Therefore,in this work,a series of 2DMOFs with different metals and coordinating atoms are systematically investigated as electrocatalysts for ammonia synthesis using density functional theory calculations.For a specific metal,a proper metal-intermediate atoms p-d orbital hybridization interaction strength is found to be a key indicator for their NRR catalytic activities.The hybridization interaction strength can be quantitatively described with the p-/d-band center energy difference(Δd-p),which is found to be a sufficient descriptor for both the p-d hybridization strength and the NRR performance.The maximum free energy change(ΔG_(max))andΔd-p have a volcanic relationship with OsC_(4)(Se)_(4)located at the apex of the volcanic curve,showing the best NRR performance.The asymmetrical coordination environment could regulate the band structure subtly in terms of band overlap and positions.This work may shed new light on the application of orbital engineering in electrocatalytic NRR activity and especially promotes the rational design for SACs.
基金Projects(42177164,52474121)supported by the National Science Foundation of ChinaProject(PBSKL2023A12)supported by the State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,China。
文摘In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry.