期刊文献+
共找到277篇文章
< 1 2 14 >
每页显示 20 50 100
Enhanced Deep Reinforcement Learning Strategy for Energy Management in Plug-in Hybrid Electric Vehicles with Entropy Regularization and Prioritized Experience Replay
1
作者 Li Wang Xiaoyong Wang 《Energy Engineering》 EI 2024年第12期3953-3979,共27页
Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different ... Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different energy sources is a critical component of PHEV control technology,directly impacting overall vehicle performance.This study proposes an improved deep reinforcement learning(DRL)-based EMSthat optimizes realtime energy allocation and coordinates the operation of multiple power sources.Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces.They often fail to strike an optimal balance between exploration and exploitation,and their assumption of a static environment limits their ability to adapt to changing conditions.Moreover,these algorithms suffer from low sample efficiency.Collectively,these factors contribute to convergence difficulties,low learning efficiency,and instability.To address these challenges,the Deep Deterministic Policy Gradient(DDPG)algorithm is enhanced using entropy regularization and a summation tree-based Prioritized Experience Replay(PER)method,aiming to improve exploration performance and learning efficiency from experience samples.Additionally,the correspondingMarkovDecision Process(MDP)is established.Finally,an EMSbased on the improvedDRLmodel is presented.Comparative simulation experiments are conducted against rule-based,optimization-based,andDRL-based EMSs.The proposed strategy exhibitsminimal deviation fromthe optimal solution obtained by the dynamic programming(DP)strategy that requires global information.In the typical driving scenarios based onWorld Light Vehicle Test Cycle(WLTC)and New European Driving Cycle(NEDC),the proposed method achieved a fuel consumption of 2698.65 g and an Equivalent Fuel Consumption(EFC)of 2696.77 g.Compared to the DP strategy baseline,the proposed method improved the fuel efficiency variances(FEV)by 18.13%,15.1%,and 8.37%over the Deep QNetwork(DQN),Double DRL(DDRL),and original DDPG methods,respectively.The observational outcomes demonstrate that the proposed EMS based on improved DRL framework possesses good real-time performance,stability,and reliability,effectively optimizing vehicle economy and fuel consumption. 展开更多
关键词 plug-in hybrid electric vehicles deep reinforcement learning energy management strategy deep deterministic policy gradient entropy regularization prioritized experience replay
下载PDF
OPTIMIZATION APPROACH FOR HYBRID ELECTRIC VEHICLE POWERTRAIN DESIGN 被引量:9
2
作者 ZhuZhengli ZhangJianwu YinChengliang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第1期30-36,共7页
According to bench test results of fuel economy and engine emission for thereal power-train system of EQ7200HEV car. a 3-D performance map oriented quasi-linear model isdeveloped for the configuration of the powertrai... According to bench test results of fuel economy and engine emission for thereal power-train system of EQ7200HEV car. a 3-D performance map oriented quasi-linear model isdeveloped for the configuration of the powertrain components such as internal combustion engine,traction electric motor, transmission, main retarder and energy storage unit. A genetic algorithmbased on optimization procedure is proposed and applied for parametric optimization of the keycomponents by consideration of requirements of some driving cycles. Through comparison of numericalresults obtained by the genetic algorithm with those by traditional optimization methods, it isshown that the present approach is quite effective and efficient in emission reduction and fueleconomy for the design of the hybrid electric car powertrain. 展开更多
关键词 hybrid electric vehicle(HEV) powertrain Components sizing Optimization Genetic algorithm
下载PDF
An optimal energy management development for various configuration of plug-in and hybrid electric vehicle 被引量:8
3
作者 Morteza Montazeri-Gh Mehdi Mahmoodi-K 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1737-1747,共11页
Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the mai... Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the main factors which affect HEV's fuel consumption, emission and performance. Therefore, optimal management of the energy components is a key element for the success of a HEV. An optimal energy management system is developed for HEV based on genetic algorithm. Then, different powertrain system component combinations effects are investigated in various driving cycles. HEV simulation results are compared for default rule-based, fuzzy and GA-fuzzy controllers by using ADVISOR. The results indicate the effectiveness of proposed optimal controller over real world driving cycles. Also, an optimal powertrain configuration to improve fuel consumption and emission efficiency is proposed for each driving condition. Finally, the effects of batteries in initial state of charge and hybridization factor are investigated on HEV performance to evaluate fuel consumption and emissions. Fuel consumption average reduction of about 14% is obtained for optimal configuration data in contrast to default configuration. Also results indicate that proposed controller has reduced emission of about 10% in various traffic conditions. 展开更多
关键词 plug-in and hybrid electric vehicle energy management CONFIGURATION genetic fuzzy controller fuel consumption EMISSION
下载PDF
Novel flexible hybrid electric system and adaptive online-optimal energy management controller for plug-in hybrid electric vehicles 被引量:4
4
作者 何建辉 杨林 +2 位作者 羌嘉曦 陈自强 朱建新 《Journal of Central South University》 SCIE EI CAS 2012年第4期962-973,共12页
In order to achieve the improvement of the driving comfort and energy efficiency,an new e-CVT flexible full hybrid electric system(E2FHS) is proposed,which uses an integrated main drive motor and generator to take the... In order to achieve the improvement of the driving comfort and energy efficiency,an new e-CVT flexible full hybrid electric system(E2FHS) is proposed,which uses an integrated main drive motor and generator to take the place of the original automatic or manual transmission to realize the functions of continuously variable transmission(e-CVT).The design and prototype realization of the E2FHS system for a plug-in hybrid vehicle(PHEV) is performed.In order to analyze and optimize the parameters and the power flux between different parts of the E2FHS,simulation software is developed.Especially,in order to optimize the performance of the energy economy improvement of the E2FHS,the effect of the different energy management controllers is investigated,and an adaptive online-optimal energy management controller for the E2FHS is built and validated by the prototype PHEV. 展开更多
关键词 e-CVT flexible full hybrid electric system adaptive online-optimal controller plug-in hybrid vehicle
下载PDF
Energy Control of Plug-In Hybrid Electric Vehicles Using Model Predictive Control With Route Preview 被引量:4
5
作者 Yang Zhao Yanguang Cai Qiwen Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第12期1948-1955,共8页
The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historic... The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historical and real-time traffic data,in which information fusion model and trafficprediction model are used to improve the information accuracy.Then,dynamic programming combined with equivalent con-sumption minimization strategy is used to compute an optimalsolution for real-time energy management.The solution is thereference for PHEV energy management control along the route.To improve the system's ability of handling changing situation,the study further explores predictive control model in the real-time control of the energy.A simulation is performed to modelPHEV under above energy control strategy with route preview.The results show that the average fuel consumption of PHEValong the previewed route with model predictive control(MPC)strategy can be reduced compared with optimal strategy andbase control strategy. 展开更多
关键词 Energy management model predictive control(MPC) optimal control plug-in hybrid electric vehicle(PHEV)
下载PDF
Parameters matching and optimization of parallel hybrid electric vehicle powertrain 被引量:7
6
作者 陈勇 Chen Xiaokai Lin Yi 《High Technology Letters》 EI CAS 2010年第1期34-38,共5页
Aiming at the development of parallel hybrid electric vehicle (PHEV) powertrain, parameter matching and optimization are presented, According to the performance of PHEV, the optimization range of engine, motor, driv... Aiming at the development of parallel hybrid electric vehicle (PHEV) powertrain, parameter matching and optimization are presented, According to the performance of PHEV, the optimization range of engine, motor, driveline gear ratio and battery parameters are determined. And then a two-level optimization problem is formulated based on analytical target cascading (ATC). At the system level, the optimization of the whole vehicle fuel economy is carried out, while the tractive performance is defined as the constraints. The optimized parameters are cascaded to the subsystem as the optimization targets. At the subsystem level, the final drive and transmission design are optimized to make the ratios as close to the targets as possible. The optimization result shows that the fuel economy had improved significantly, while the tractive performance maintains the former level. 展开更多
关键词 parallel hybrid electric vehicle (PHEV) parameters matching OPTIMIZATION analytical target cascading (ATC) powertrain
下载PDF
City-Bus-Route Demand-based Efficient Coupling Driving Control for Parallel Plug-in Hybrid Electric Bus 被引量:2
7
作者 Qin-Pu Wang Chao Yang +1 位作者 Ya-Hui Liu Yuan-Bo Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第3期168-178,共11页
Recently,plug?in hybrid electric bus has been one of the energy?e cient solutions for urban transportation. However,the current vehicle e ciency is far from optimum,because the unpredicted external driving conditions ... Recently,plug?in hybrid electric bus has been one of the energy?e cient solutions for urban transportation. However,the current vehicle e ciency is far from optimum,because the unpredicted external driving conditions are di cult to be obtained in advance. How to further explore its fuel?saving potential under the complicated city bus driving cycles through an e cient control strategy is still a hot research issue in both academic and engineering area. To realize an e cient coupling driving operation of the hybrid powertrain,a novel coupling driving control strategy for plug?in hybrid electric bus is presented. Combined with the typical feature of a city?bus?route,the fuzzy logic inference is employed to quantify the driving intention,and then to determine the coupling driving mode and the gear?shifting strategy. Considering the response deviation problem in the execution layer,an adaptive robust controller for electric machine is designed to respond to the transient torque demand,and instantaneously compensate the response delay and the engine torque fluctuation. The simulations and hard?in?loop tests with the actual data of two typical driving conditions from the real?world city?bus?route are carried out,and the results demonstrate that the pro?posed method could guarantee the hybrid powertrain to track the actual torque demand with 10.4% fuel economy improvement. The optimal fuel economy can be obtained through the optimal combination of working modes. The fuel economy of plug?in hybrid electric bus can be significantly improved by the proposed control scheme without loss of drivability. 展开更多
关键词 hybrid electric vehicle Single?shaft parallel electromechanical powertrain Coupling driving mode Adaptive robust control
下载PDF
Variable Parameter Self-Adaptive Control Strategy Based on Driving Condition Identification for Plug-In Hybrid Electric Bus 被引量:1
8
作者 Kongjian Qin Yu Liu Xi Hu 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期162-170,共9页
A variable parameter self-adaptive control strategy based on driving condition identification is proposed to take full advantage of the fuel saving potential of the plug-in hybrid electric bus(PHEB).Firstly,the princi... A variable parameter self-adaptive control strategy based on driving condition identification is proposed to take full advantage of the fuel saving potential of the plug-in hybrid electric bus(PHEB).Firstly,the principal component analysis(PCA)and the fuzzy c-means clustering(FCM)algorithm is used to construct the comprehensive driving cycle,congestion driving cycle,urban driving cycle and suburban driving cycle of Chinese urban buses.Secondly,an improved particle swarm optimization(IPSO)algorithm is proposed,and is used to optimize the control parameters of PHEB under different driving cycles,respectively.Then,the variable parameter self-adaptive control strategy based on driving condition identification is given.Finally,for an actual running vehicle,the driving condition is identified by relevance vector machine(RVM),and the corresponding control parameters are selected to control the vehicle.The simulation results show that the fuel consumption of using the variable parameter self-adaptive control strategy is reduced by 4.2% compared with that of the fixed parameter control strategy,and the feasibility of the variable parameter self-adaptive control strategy is verified. 展开更多
关键词 plug-in hybrid electric bus(PHEB) variable PARAMETER SELF-ADAPTIVE control strategy energy CONSUMPTION
下载PDF
Simulation research of energy management strategy for dual mode plug-in hybrid electrical vehicles 被引量:1
9
作者 李训明 liu hui +3 位作者 xin hui-bin yan zheng-jun zhang zhi-peng liu bei 《Journal of Chongqing University》 CAS 2017年第2期59-71,共13页
In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is d... In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is divided into power mode and economy mode. Energy management strategy designing methods of power mode and economy mode are proposed. Maximum velocity, acceleration performance and fuel consumption are simulated during the CS period in the AVL CRUISE simulation environment. The simulation results indicate that the maximum velocity and acceleration time of the power mode are better than those in the economy mode. Fuel consumption of the economy mode is better than that in the power mode. Fuel consumption of PHEV during the CS period is further improved by using the methods proposed in this paper, and this is meaningful for research and development of PHEV. 展开更多
关键词 plug-in hybrid electrical vehicle power mode eco mode energy management strategy model and simulation
下载PDF
Powertrain Fuel Consumption Modeling and Benchmark Analysis of a Parallel P4 Hybrid Electric Vehicle Using Dynamic Programming 被引量:1
10
作者 Aaron R. Mull Andrew C. Nix +3 位作者 Mario G. Perhinschi W. Scott Wayne Jared A. Diethorn Dawson E. Dunnuck 《Journal of Transportation Technologies》 2022年第4期804-832,共29页
The goal of this work is to develop a hybrid electric vehicle model that is suitable for use in a dynamic programming algorithm that provides the benchmark for optimal control of the hybrid powertrain. The benchmark a... The goal of this work is to develop a hybrid electric vehicle model that is suitable for use in a dynamic programming algorithm that provides the benchmark for optimal control of the hybrid powertrain. The benchmark analysis employs dynamic programming by backward induction to determine the globally optimal solution by solving the energy management problem starting at the final timestep and proceeding backwards in time. This method requires the development of a backwards facing model that propagates the wheel speed of the vehicle for the given drive cycle through the driveline components to determine the operating points of the powertrain. Although dynamic programming only searches the solution space within the feasible regions of operation, the benchmarking model must be solved for every admissible state at every timestep leading to strict requirements for runtime and memory. The backward facing model employs the quasi-static assumption of powertrain operation to reduce the fidelity of the model to accommodate these requirements. Verification and validation testing of the dynamic programming algorithm is conducted to ensure successful operation of the algorithm and to assess the validity of the determined control policy against a high-fidelity forward-facing vehicle model with a percent difference of fuel consumption of 1.2%. The benchmark analysis is conducted over multiple drive cycles to determine the optimal control policy that provides a benchmark for real-time algorithm development and determines control trends that can be used to improve existing algorithms. The optimal combined charge sustaining fuel economy of the vehicle is determined by the dynamic programming algorithm to be 32.99 MPG, a 52.6% increase over the stock 3.6 L 2019 Chevrolet Blazer. 展开更多
关键词 hybrid Electric Vehicle Dynamic Programming powertrain Modeling Backwards Induction
下载PDF
Fuel Saving and Control for Hybrid Electric Powertrains
11
作者 Mohamed Zaher Sabri Cetinkunt 《Energy and Power Engineering》 2013年第5期343-351,共9页
This paper focuses on comparing the performance of the embedded control of a hybrid powertrain with the original and downsized engine. The main idea is to store the normally wasted mechanical regenerative energy in en... This paper focuses on comparing the performance of the embedded control of a hybrid powertrain with the original and downsized engine. The main idea is to store the normally wasted mechanical regenerative energy in energy storage devices for later usage. The regenerative energy recovery opportunity exists in any condition where the speed of motion is in the opposite direction to the applied force or torque. A rule based optimal robust control algorithm is developed and is tuned for different work cycles. A comparison of the fuel savings using the hybrid system with the original and downsized engines is performed. 展开更多
关键词 hybrid powertrain EMBEDDED Control STATE of CHARGE Downsized ENGINE
下载PDF
向电动车看齐 PRIUS PLUG-IN HYBRID 被引量:1
12
作者 刘雅坤 霍庆泽 《世界汽车》 2011年第4期78-79,共2页
单从环保方面来说,纯电动车无疑是最优秀的,但是充电设施的不完善以及自身续航里程有限等因素依然制约着纯电动车的发展,而单纯的混合动力车型在控制CO2排放方面能力有限,于是一种名为"PHEV"的车型诞生了。
关键词 纯电动车 plug-in hybrid PRIUS CO2排放 混合动力 车型 里程
下载PDF
Analysis of Hybrid Rechargeable Energy Storage Systems in Series Plug-In Hybrid Electric Vehicles Based on Simulations
13
作者 Karel Fleurbaey Noshin Omar +2 位作者 Mohamed El Baghdadi Jean-Marc Timmermans Joeri Van Mierlo 《Energy and Power Engineering》 2014年第8期195-211,共17页
In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, ba... In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, based on simulations with three different driving cycles. The investigated hybrid energy storage topologies are an energy optimized lithium-ion battery (HE) in combination with an Electrical Double-Layer Capacitor (EDLC) system, in combination with a power optimized lithium-ion battery (HP) system or in combination with a Lithium-ion Capacitor (LiCap) system, that act as a Peak Power System. From the simulation results it was observed that hybridization of the HE lithium-ion based energy storage system resulted from the three topologies in an increased overall energy efficiency of the RESS, in an extended all electric range of the PHEV and in a reduced average current through the HE battery. The lowest consumption during the three driving cycles was obtained for the HE-LiCap topology, where fuel savings of respectively 6.0%, 10.3% and 6.8% compared with the battery stand-alone system were achieved. The largest extension of the range was achieved for the HE-HP configuration (17% based on FTP-75 driving cycle). HP batteries however have a large internal resistance in comparison to EDLC and LiCap systems, which resulted in a reduced overall energy efficiency of the hybrid RESS. Additionally, it was observed that the HP and LiCap systems both offer significant benefits for the integration of a peak power system in the drivetrain of a Plug-in Hybrid Electric Vehicle due to their low volume and weight in comparison to that of the EDLC system. 展开更多
关键词 plug-in hybrid Electric Vehicle hybrid ENERGY Storage System HIGH ENERGY BATTERY HIGH Power BATTERY Electrical DOUBLE-LAYER CAPACITOR Lithium-Ion CAPACITOR
下载PDF
Performance and Stability of Supercapacitor Modules based on Porous Carbon Electrodes in Hybrid Powertrain
14
作者 龚旋 谢长君 +3 位作者 ZOU Yaohui QUAN Shuhai PIOTR Bujlo SHEN Di 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1141-1146,共6页
Hybrid power sources have attracted much attention in the electric vehicle area. Particularly, electric-electric hybrid powertrain system consisting of supercapacitor modules and lithium-ion batteries has been widely ... Hybrid power sources have attracted much attention in the electric vehicle area. Particularly, electric-electric hybrid powertrain system consisting of supercapacitor modules and lithium-ion batteries has been widely applied because of the high power density of supercapacitors. In this study, we design a hybrid powertrain system containing two porous carbon electrode-based supercapacitor modules in parallel and one lithium ion battery pack. With the construction of the testing station, the performance and stability of the used supercapacitor modules are investigated in correlation with the structure of the supercapacitor and the nature of the electrode materials applied. It has been shown that the responding time for voltage vibration from 20 V to 48.5 V during charging or discharging process decreases from about 490 s to 94 s with the increase in applied current from 20 A to 100 A. The capacitance of the capacitor modules is nearly independent on the applied current. With the designed setup, the energy efficiency can reach as high as 0.99. The results described here provide a guidance for material selection of supercapacitors and optimized controlling strategy for hybrid power system applied in electric vehicles. 展开更多
关键词 supercapacitor modules electric-electric hybrid powertrain charging-discharging cycle stability power density
下载PDF
大佬的环保生活 NEW BENZ S 500 PLUG-IN HYBRID
15
作者 刘雅坤 《世界汽车》 2013年第10期40-41,共2页
众所周知,以丰田为代表的日系车企在混合动力及插电式混合动力领域一直处于行业领先水平,但是其他车企并未坐以待毙,奔驰公司曾以老款S级轿车为基础研发混合动力及插电式混合动力技术,并于2009正式推出S 400 Hybrid车型以及S 500 Pl... 众所周知,以丰田为代表的日系车企在混合动力及插电式混合动力领域一直处于行业领先水平,但是其他车企并未坐以待毙,奔驰公司曾以老款S级轿车为基础研发混合动力及插电式混合动力技术,并于2009正式推出S 400 Hybrid车型以及S 500 Plug-in Hybrid概念车。如今,经过4年的进化和发展,插电式混合动力技术也更趋成熟,于是今年的法兰克福车展就成了奔驰S 500 Plug-in Hybrid量产车型首发亮相的最佳舞台。 展开更多
关键词 plug-in hybrid 混合动力技术 plug-in hybrid 生活 环保 法兰克福车展
下载PDF
OPEL GRANDLAND X PLUG-IN HYBRID4 能“混”才行
16
作者 王一鸣 《世界汽车》 2019年第6期20-23,共4页
'随着各家车企都在新能源领域进行着自己的努力,似乎再不行动的汽车品牌就会被这个时代抛弃。日前,在中国已很少见却在欧洲混得风生水起的欧宝推出了旗下首款插电混合动力车型——Grandland X Plug-in Hybrid4,正如其名称所写的那样... '随着各家车企都在新能源领域进行着自己的努力,似乎再不行动的汽车品牌就会被这个时代抛弃。日前,在中国已很少见却在欧洲混得风生水起的欧宝推出了旗下首款插电混合动力车型——Grandland X Plug-in Hybrid4,正如其名称所写的那样,新车型是基于Grandland X打造而来。' 展开更多
关键词 新车型 OPEL GRANDLAND X plug-in hybrid4
下载PDF
混出精彩 VOLVO XC60 PLUG-IN HYBRID CONCEPT
17
作者 包崇美 王艳红 《世界汽车》 2012年第2期28-29,共2页
凭借着高大宽敞的空间和底盘的高通过性,在自驾游越来越盛行的今天,SUV车型慢慢成了市场上的"香馍馍",其市场热度毫不逊色于小排量车型。但高油耗和高排放的环保问题成为制约其进一步发展的瓶颈,于是开发混合动力的SUV车型成为汽车厂... 凭借着高大宽敞的空间和底盘的高通过性,在自驾游越来越盛行的今天,SUV车型慢慢成了市场上的"香馍馍",其市场热度毫不逊色于小排量车型。但高油耗和高排放的环保问题成为制约其进一步发展的瓶颈,于是开发混合动力的SUV车型成为汽车厂商研发的一个重点。 展开更多
关键词 plug-in hybrid VOLVO SUV车型 环保问题 汽车厂商 混合动力 通过性
下载PDF
Plug-in Hybrid启示录
18
作者 吴展濠 《汽车测试报告》 2010年第1期143-144,共2页
2009年的法兰克福和东京车展中,奔驰、宝马、丰田、铃木、三菱等都展出了他们的插电式混合动力车,这是否代表这种技术已经是新一代混合动力车的趋势?
关键词 plug-in hybrid 混合动力车 东京车展 法兰克福 奔驰 宝马 丰田
下载PDF
起亚Ray Plug-In Hybrid
19
《轿车情报》 2010年第3期40-40,共1页
全新Ray概念车乃由Kia美国设计中心操刀,旨在将Kia新一代设计元素,融合在Plug—in Hybrid插电式油电混合车款之中。目前正在研究替代动力的方案。而Kia也计划在今年内,将LPG Hybrid液化石油气混合动力车款导入市售量产阶段,并在韩... 全新Ray概念车乃由Kia美国设计中心操刀,旨在将Kia新一代设计元素,融合在Plug—in Hybrid插电式油电混合车款之中。目前正在研究替代动力的方案。而Kia也计划在今年内,将LPG Hybrid液化石油气混合动力车款导入市售量产阶段,并在韩国开售。 展开更多
关键词 plug-in hybrid 油电混合车 混合动力车 液化石油气 设计中心 设计元素 概念车
下载PDF
中国混合动力汽车动力总成技术进展 被引量:1
20
作者 许敏 张亦嘉 《汽车安全与节能学报》 CAS CSCD 北大核心 2024年第3期269-294,共26页
在国家政策与市场需求的双重驱动下,2021年以来,中国品牌混合动力汽车动力总成技术实现突破,围绕中国市场特点与消费者用车习惯推出一批具有中国特色、世界范围内领先的混合动力汽车产品。近期混合动力汽车市场销量呈爆发式增长,2023年... 在国家政策与市场需求的双重驱动下,2021年以来,中国品牌混合动力汽车动力总成技术实现突破,围绕中国市场特点与消费者用车习惯推出一批具有中国特色、世界范围内领先的混合动力汽车产品。近期混合动力汽车市场销量呈爆发式增长,2023年中国市场混合动力乘用车销售超300万辆,同比增长83%。然而,受近年来汽车领域电动化浪潮影响,行业内尚存关于混合动力汽车仅为过渡性技术的观点,部分消费者对国产混动汽车技术产品力仍存质疑。为纠正对混合动力汽车的片面性、偏见性认识,该文围绕中国混合动力汽车动力总成技术路线展开,聚焦多样化的混动架构与专用化的核心部件,提出新的混合度定义作为动力总成电气化程度的统一评价标准,探讨国内外主流混动技术异同,剖析当下中国最前沿的混动技术特点与发展趋势,厘清中国混动汽车动力总成的发展脉络。研究表明:中国式混动汽车以大容量动力电池与插电式混合动力为技术特色,实现发动机、电机两大驱动动力源以及动力电池、增程系统两大动力能量源的灵活混合与优势互补。与纯内燃机车相比,得益于电驱动技术辅助,混合动力汽车聚焦提高发动机热效率、发动机高效区利用率以及整车燃油经济性。与纯电动车相比,混合动力汽车则基于发动机的增程发电,以高性价比和高便利度解决纯电动车的补能焦虑;并通过结合发动机直驱、变速器动力放大等机械驱动技术,以更低的硬件成本实现更稳定的强劲动力输出。混合动力汽车的独特优势使其作为长期性技术路线,将成为带动汽车产业向碳中和方向转型升级的关键,该文对当下市场的深度分析和未来趋势的理性推测将为中国混动技术的进一步发展提供有益参考。 展开更多
关键词 混合动力汽车 混动专用变速器 混动专用发动机 动力总成
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部