期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
CONSTRUCTION OF PLURIHARMONIC MAPS INTO COMPLEX GRASSMANN MANIFOLDS
1
作者 潮小李 《Acta Mathematica Scientia》 SCIE CSCD 2003年第2期185-191,共7页
In this paper, some construction theorems of pluriharmonic maps into complex Grassmann manifolds axe obtained. By these, there exists a characterization of strongly isotropic pluriharmonic maps.
关键词 pluriharmonic map complex Grassmann manifold CONSTRUCTION DIAGRAM
下载PDF
A BOUNDARY SCHWARZ LEMMA FOR PLURIHARMONIC MAPPINGS FROM THE UNIT POLYDISK TO THE UNIT BALL
2
作者 Ling LI Hongyi LI +4 位作者 Di ZHAO LMIB School of Mathematics and Systems Science Beihang University 《Acta Mathematica Scientia》 SCIE CSCD 2018年第3期926-934,共9页
In this article, we present a Schwarz lemma at the boundary for pluriharmonic mappings from the unit polydisk to the unit ball, which generalizes classical Schwarz lemma for bounded harmonic functions to higher dimens... In this article, we present a Schwarz lemma at the boundary for pluriharmonic mappings from the unit polydisk to the unit ball, which generalizes classical Schwarz lemma for bounded harmonic functions to higher dimensions. It is proved that if the pluriharmonic mapping f ∈ P(Dn, BN) is C1+α at z0 ∈ ErDn with f(0) = 0 and f(z0) = ω0∈BN for any n,N ≥ 1, then there exist a nonnegative vector λf =(λ1,0,…,λr,0,…,0)T∈R2 nsatisfying λi≥1/(22 n-1) for 1 ≤ i ≤ r such that where z’0 and w’0 are real versions of z0 and w0, respectively. 展开更多
关键词 Boundary Schwarz lemma pluriharmonic mapping unit polydisk unit ball
下载PDF
THE EXTENDED SOLUTIONS OF PLURIHARMONIC MAPS INTO COMPLEX GRASSMANNIAN MANIFOLDS
3
作者 潮小李 《Acta Mathematica Scientia》 SCIE CSCD 1999年第2期168-174,共7页
In this paper, the extended solutions of some pluriharmonic maps into complex Grassmannian manifolds will be given.
关键词 extended solution pluriharmonic map Grassmannian manifold
下载PDF
Partial energies monotonicity and holomorphicity of Hermitian pluriharmonic maps 被引量:1
4
作者 YANG GuiLin HAN YingBo DONG YuXin 《Science China Mathematics》 SCIE 2013年第5期1019-1032,共14页
In this paper, we introduce the notion of Hermitian pluriharmonic maps from Hermitian manifold into Kiihler manifold. Assuming the domain manifolds possess some special exhaustion functions and the vecotor field V = J... In this paper, we introduce the notion of Hermitian pluriharmonic maps from Hermitian manifold into Kiihler manifold. Assuming the domain manifolds possess some special exhaustion functions and the vecotor field V = JMδJM satisfies some decay conditions, we use stress-energy tensors to establish some monotonicity formulas of partial energies of Hermitian pluriharmonic maps. These monotonicity inequalities enable us to derive some holomorphicity for these Hermitian pluriharmonic maps. 展开更多
关键词 stress energy tensor monotonicity formula Hermitian pluriharmonic map holomorphic map
原文传递
ON FACTORIZATION THEOREMS OF PLURIHARMONIC MAPS INTO THE UNITARY GROUP 被引量:1
5
作者 CHENGQIYUAN DONGYUXIN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1997年第3期323-330,共8页
The authors give some constructive factorization theorems for pluriharmonic maps from a Kaehler manifold into the unitary group U(N) and obtain some optimal upper bounds of minimal uniton numbers.
关键词 pluriharmonic map Kaehler manifold Unitary group FACTORIZATION Untion number
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部