Pneumatic driven system is widely used in industrial automation, mainly for relatively simple tasks with open-loop control. Because of the pneumatic system’s compressibility and few stop positions, it was considered ...Pneumatic driven system is widely used in industrial automation, mainly for relatively simple tasks with open-loop control. Because of the pneumatic system’s compressibility and few stop positions, it was considered hard to control in a precise motion control system. With the help of newly developed pneumatic servo control technology, using servo-pneumatic positioning controller now is just as easy as using electro-servo system. This article discusses Web-based servo-pneumatic manipulator control and object recognition and positioning. The authors built a three-degrees-of-freedom (3 DOF) pneumatic manipulator with a servo-pneumatic closed-loop control system and machine vision system in their lab. Web-based tele-operation was a basic ability in this experimental system. After installing a CCD camera, video capture card, and related software developed by the authors, the robot could recognize the user specified object through the Web page and find its position. The remote user could command the robot to move to the position and to grab the object. The critical issues of Web-based control are to integrate hybrid open-architecture mechatronic system through the Web and develop a software language environment characterized by the script. The authors’ experiment showed that pneumatic devices could serve as accurate position control and be controlled through the Web.展开更多
A parallel manipulator joint driven by three pneumatic muscles and its posture control strategy are presented. Based on geometric constraints and dynamics, a system model is developed through which some influences on ...A parallel manipulator joint driven by three pneumatic muscles and its posture control strategy are presented. Based on geometric constraints and dynamics, a system model is developed through which some influences on dynamic response and open-loop gain are analyzed including the supply pressure, the initial pressure and the volume of pneumatic muscle. A sliding-mode controller with a nonlinear switching function is applied to control posture, which adopts the combination of a main method that separates control of each muscle and an auxiliary method that postures error evaluation of multiple muscles, especially adopting the segmented and intelligent adjustments of sliding-mode parameters to fit different expected postures and initial states. Experimental results show that this control strategy not only amounts to the steady-state error of 0. 1° without overshoot, but also achieves good trajectory tracking.展开更多
基金Project (No. ZD0107) supported by Natural Science Foundation of Zhejiang Province, China
文摘Pneumatic driven system is widely used in industrial automation, mainly for relatively simple tasks with open-loop control. Because of the pneumatic system’s compressibility and few stop positions, it was considered hard to control in a precise motion control system. With the help of newly developed pneumatic servo control technology, using servo-pneumatic positioning controller now is just as easy as using electro-servo system. This article discusses Web-based servo-pneumatic manipulator control and object recognition and positioning. The authors built a three-degrees-of-freedom (3 DOF) pneumatic manipulator with a servo-pneumatic closed-loop control system and machine vision system in their lab. Web-based tele-operation was a basic ability in this experimental system. After installing a CCD camera, video capture card, and related software developed by the authors, the robot could recognize the user specified object through the Web page and find its position. The remote user could command the robot to move to the position and to grab the object. The critical issues of Web-based control are to integrate hybrid open-architecture mechatronic system through the Web and develop a software language environment characterized by the script. The authors’ experiment showed that pneumatic devices could serve as accurate position control and be controlled through the Web.
基金This project is supported by International Cooperation with Festo.
文摘A parallel manipulator joint driven by three pneumatic muscles and its posture control strategy are presented. Based on geometric constraints and dynamics, a system model is developed through which some influences on dynamic response and open-loop gain are analyzed including the supply pressure, the initial pressure and the volume of pneumatic muscle. A sliding-mode controller with a nonlinear switching function is applied to control posture, which adopts the combination of a main method that separates control of each muscle and an auxiliary method that postures error evaluation of multiple muscles, especially adopting the segmented and intelligent adjustments of sliding-mode parameters to fit different expected postures and initial states. Experimental results show that this control strategy not only amounts to the steady-state error of 0. 1° without overshoot, but also achieves good trajectory tracking.