期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Design and Dynamic Model of a Frog-inspired Swimming Robot Powered by Pneumatic Muscles 被引量:9
1
作者 Ji-Zhuang Fan Wei Zhang +2 位作者 Peng-Cheng Kong He-Gao Cai Gang-Feng Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第5期1123-1132,共10页
Pneumatic muscles with similar characteristics to biological muscles have been widely used in robots, and thus are promising drivers for frog inspired robots. How- ever, the application and nonlinearity of the pneumat... Pneumatic muscles with similar characteristics to biological muscles have been widely used in robots, and thus are promising drivers for frog inspired robots. How- ever, the application and nonlinearity of the pneumatic system limit the advance. On the basis of the swimming mechanism of the frog, a frog-inspired robot based on pneumatic muscles is developed. To realize the indepen- dent tasks by the robot, a pneumatic system with internal chambers, micro air pump, and valves is implemented. The micro pump is used to maintain the pressure difference between the source and exhaust chambers. The pneumatic muscles are controlled by high-speed switch valves which can reduce the robot cost, volume, and mass. A dynamic model of the pneumatic system is established for the sim- ulation to estimate the system, including the chamber, muscle, and pneumatic circuit models. The robot design is verified by the robot swimming experiments and the dynamic model is verified through the experiments and simulations of the pneumatic system. The simulation results are compared to analyze the functions of the source pressure, internal volume of the muscle, and circuit flow rate which is proved the main factor that limits the response of muscle pressure. The proposed research provides the application of the pneumatic muscles in the frog inspired robot and the pneumatic model to study muscle controller. 展开更多
关键词 Frog-inspired robot pneumatic muscle High-speed switch valve pneumatic model
下载PDF
Real Gas Effects on Charging and Discharging Processes of High Pressure Pneumatics 被引量:6
2
作者 LUO Yuxi WANG Xuanyin GE Yaozheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期61-68,共8页
The high pressure pneumatic system has been applied to special industries. It may cause errors when we analyze high pressure pneumatics under ideal gas assumption. However, the real gas effect on the performances of h... The high pressure pneumatic system has been applied to special industries. It may cause errors when we analyze high pressure pneumatics under ideal gas assumption. However, the real gas effect on the performances of high pressure pneumatics is seldom investigated. In this paper, the real gas effects on air enthalpy and internal energy are estimated firstly to study the real gas effect on the energy conversion. Under ideal gas assumption, enthalpy and internal energy are solely related to air temperature. The estimation result indicates that the pressure enthalpy and pressure internal energy of real pneumatic air obviously decrease the values of enthalpy and internal energy for high pressure pneumatics, and the values of pressure enthalpy and pressure internal energy are close. Based on the relationship among pressure, enthalpy and internal energy, the real gas effects on charging and discharging processes of high pressure pneumatics are estimated, which indicates that the real gas effect accelerates the temperature and pressure decreasing rates during discharging process, and decelerates their increasing rates during charging process. According to the above analysis, and for the inconvenience in building the simulation model for real gas and the difficulty of measuring the detail thermal capacities of pneumatics, a method to compensate the real gas effect under ideal gas assumption is proposed by modulating the thermal capacity of the pneumatic container in simulation. The experiments of switching expansion reduction (SER) for high pressure pneumatics are used to verify this compensating method. SER includes the discharging process of supply tanks and the charging process of expansion tank. The simulated and experimental results of SER are highly consistent. The proposed compensation method provides a convenient way to obtain more realistic simulation results for high pressure pneumatics. 展开更多
关键词 real gas effect pneumatic simulation model high pressure pneumatics
下载PDF
Adaptive robust control of soft bending actuators:an empirical nonlinear model-based approach 被引量:2
3
作者 Cong CHEN Jun ZOU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2021年第9期681-694,共14页
Soft robotics,compared with their rigid counterparts,are able to adapt to uncharted environments,are superior in safe human-robot interactions,and have low cost,owing to the native compliance of the soft materials.How... Soft robotics,compared with their rigid counterparts,are able to adapt to uncharted environments,are superior in safe human-robot interactions,and have low cost,owing to the native compliance of the soft materials.However,customized complex structures,as well as the nonlinear and viscoelastic soft materials,pose a great challenge to accurate modeling and control of soft robotics,and impose restrictions on further applications.In this study,a unified modeling strategy is proposed to establish a complete dynamic model of the most widely used pneumatic soft bending actuator.First,a novel empirical nonlinear model with parametric and nonlinear uncertainties is identified to describe the nonlinear behaviors of pneumatic soft bending actuators.Second,an inner pressure dynamic model of a pneumatic soft bending actuator is established by introducing a modified valve flow rate model of the unbalanced pneumatic proportional valves.Third,an adaptive robust controller is designed using a backstepping method to handle and update the nonlinear and uncertain system.Finally,the experimental results of comparative trajectory tracking control indicate the validity of the proposed modeling and control method. 展开更多
关键词 pneumatic soft bending actuator Empirical nonlinear model identification Unbalanced pneumatic proportional valve modeling Adaptive robust control Trajectory tracking
原文传递
Effect of particle degradation on electrostatic sensor measurements and flow characteristics in dilute pneumatic conveying 被引量:2
4
作者 Wei Chen Jianyong Zhang +4 位作者 Timothy Donohua Kenneth Williams Ruixue Cheng Mark Jones Bin Zhou 《Particuology》 SCIE EI CAS CSCD 2017年第4期73-79,共7页
Vigorous particle collisions and mechanical processes occurring during high-velocity pneumatic con- veying often lead to particle degradation. The resulting particle size reduction and particle number increase will im... Vigorous particle collisions and mechanical processes occurring during high-velocity pneumatic con- veying often lead to particle degradation. The resulting particle size reduction and particle number increase will impact on the flow characteristics, and subsequently affect the electrostatic type of flow measurements. This study investigates this phenomenon using both experimental and numerical meth- ods. Particle degradation was induced experimentally by recursively conveying the fillite material within a pneumatic pipeline. The associated particle size reduction was monitored. Three electrostatic sensors were embedded along the pipeline to monitor the flow. The results indicated a decreasing trend in the electrostatic sensor outputs with decreasing particle size, which suggested the attenuation of the flow velocity fluctuation. This trend was more apparent at higher conveying velocities, which suggested that more severe particle degradation occurred under these conditions. Coupled computational fluid dynamics and discrete element methods (CFD-DEM) analysis was used to qualitatively validate these experimental results. The numerical results suggested that smaller particles exhibited lower flow velocity fluctua- tions, which was consistent with the observed experimental results. These findings provide important information for the accurate aoolication of electrostatic measurement devices in oneumatic conveyors. 展开更多
关键词 Particle degradation Flow velocity fluctuation Electrostatic sensor CFD-DEM modelling pneumatic conveying
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部