期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Development of a Wearable Upper Limb Rehabilitation Robot Based on Reinforced Soft Pneumatic Actuators 被引量:3
1
作者 Xinbo Chen Shuai Zhang +3 位作者 Kaibin Cao Chunjie Wei Wumian Zhao Jiantao Yao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第4期182-190,共9页
Dyskinesia of the upper limbs caused by stroke,sports injury,or trafc accidents limits the ability to perform the activities of daily living.Besides the necessary medical treatment,correct and scientifc rehabilitation... Dyskinesia of the upper limbs caused by stroke,sports injury,or trafc accidents limits the ability to perform the activities of daily living.Besides the necessary medical treatment,correct and scientifc rehabilitation training for the injured joint is an important auxiliary means during the treatment of the efected upper limb.Conventional upperlimb rehabilitation robots have some disadvantages,such as a complex structure,poor compliance,high cost,and poor portability.In this study,a novel soft wearable upper limb rehabilitation robot(SWULRR)with reinforced soft pneumatic actuators(RSPAs)that can withstand high pressure and featuring excellent loading characteristics was developed.Driven by RSPAs,this portable SWULRR can perform rehabilitation training of the wrist and elbow joints.In this study,the kinematics of an SWULRR were analyzed,and the force and motion characteristics of RSPA were studied experimentally.The results provide a reference for the development and application of wearable upper limb rehabilitation robots.An experimental study on the rotation angle of the wrist and the pressure of the RSPA was conducted to test the efect of the rehabilitation training and verify the rationality of the theoretical model.The process of wrist rehabilitation training was tested and evaluated,indicating that SWULRR with RSPAs will enhance the fexibility,comfort,and safety of rehabilitation training.This work is expected to promote the development of wearable upper-limb rehabilitation robots based on modular reinforced soft pneumatic actuators. 展开更多
关键词 Upper limb rehabilitation Reinforced soft pneumatic actuator Wearable rehabilitation robot Motion analysis
下载PDF
Soft pneumatic actuators by digital light processing combined with injection-assisted post-curing
2
作者 Qiang ZHANG Shayuan WENG +2 位作者 Zeang ZHAO H.J.QI Daining FANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第2期159-172,共14页
The soft robotics display huge advantages over their rigid counterparts when interacting with living organisms and fragile objects.As one of the most efficient actuators toward soft robotics,the soft pneumatic actuato... The soft robotics display huge advantages over their rigid counterparts when interacting with living organisms and fragile objects.As one of the most efficient actuators toward soft robotics,the soft pneumatic actuator(SPA)can produce large,complex responses with utilizing pressure as the only input source.In this work,a new approach that combines digital light processing(DLP)and injection-assisted post-curing is proposed to create SPAs that can realize different functionalities.To enable this,we develop a new class of photo-cross linked elastomers with tunable mechanical properties,good stretchability,and rapid curing speed.By carefully designing the geometry of the cavities embedded in the actuators,the resulting actuators can realize contracting,expanding,flapping,and twisting motions.In addition,we successfully fabricate a soft self-sensing bending actuator by injecting conductive liquids into the three-dimensional(3D)printed actuator,demonstrating that the present method has the potential to be used to manufacture intelligent soft robotic systems. 展开更多
关键词 soft pneumatic actuator(SPA) digital light processing(DLP) injectionassisted post-curing three-dimensional(3D)printing
下载PDF
Biomimetic soft robotic wrist with 3-DOF motion and stiffness tunability based on ring-reinforced pneumatic actuators and a particle jamming joint
3
作者 HU TeTe LU XinJiang +2 位作者 YI Jian WANG YuHui XU Du 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第3期774-790,共17页
The human wrist, a complex articulation of skeletal muscles and two-carpal rows, substantially contributes to improvements in maneuverability by agilely performing three-degree-of-freedom(3-DOF) orienting tasks and re... The human wrist, a complex articulation of skeletal muscles and two-carpal rows, substantially contributes to improvements in maneuverability by agilely performing three-degree-of-freedom(3-DOF) orienting tasks and regulating stiffness according to variations in interaction forces. However, few soft robotic wrists simultaneously demonstrate dexterous 3-DOF motion and variable stiffness;in addition, they do not fully consider a soft-rigid hybrid structure of integrated muscles and two carpal rows.In this study, we developed a soft-rigid hybrid structure to design a biomimetic soft robotic wrist(BSRW) that is capable of rotating in the x and y directions, twisting around the z-axis, and possessing stiffness-tunable capacity. To actuate the BSRW, a lightweight soft-ring-reinforced bellows-type pneumatic actuator(SRBPA) with large axial, linear deformation(η_(lcmax)=70.6%,η_(lemax)=54.3%) and small radial expansion(η_(demax)=3.7%) is designed to mimic the motion of skeletal muscles. To represent the function of two-carpal rows, a compact particle-jamming joint(PJJ) that combines particles with a membrane-covered ballsocket mechanism is developed to achieve various 3-DOF motions and high axial load-carrying capacity(>60 N). By varying the jamming pressure, the stiffness of the PJJ can be adjusted. Finally, a centrally positioned PJJ and six independently actuated SRBPAs, which are in an inclined and antagonistic arrangement, are sandwiched between two rigid plates to form a flexible,stable, and compact BSRW. Such a structure enables the BSRW to have a dexterous 3-DOF motion, high load-carrying ability,and stiffness tunability. Experimental analysis verify 3-DOF motion of BSRW, producing force of 29.6 N and 36 N and torque of2.2 Nm in corresponding rotations. Moreover, the range of rotational angle and stiffness-tuning properties of BSRW are studied by applying jamming pressure to the PJJ. Finally, a system combining a BSRW and a soft enclosing gripper is proposed to demonstrate outstanding manipulation capability in potential applications. 展开更多
关键词 pneumatic soft actuators particle jamming robotic wrist soft robotics stiffness-tunable
原文传递
Modular crawling robots using soft pneumatic actuators 被引量:3
4
作者 Nianfeng WANG Bicheng CHEN +2 位作者 Xiandong GE Xianmin ZHANG Wenbin WANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2021年第1期163-175,共13页
Crawling robots have elicited much attention in recent years due to their stable and efficient locomotion.In this work,several crawling robots are developed using two types of soft pneumatic actuators(SPAs),namely,an ... Crawling robots have elicited much attention in recent years due to their stable and efficient locomotion.In this work,several crawling robots are developed using two types of soft pneumatic actuators(SPAs),namely,an axial elongation SPA and a dual bending SPA.By constraining the deformation of the elastomeric chamber,the SPAs realize their prescribed motions,and the deformations subjected to pressures are characterized with numerical models.Experiments are performed for verification,and the results show good agreement.The SPAs are fabricated by casting and developed into crawling robots with 3D-printing connectors.Control schemes are presented,and crawling tests are performed.The speeds predicted by the numerical models agree well with the speeds in the experiments. 展开更多
关键词 soft robot soft pneumatic actuator kinematic model crawling robot modular design
原文传递
Adaptive robust control of soft bending actuators:an empirical nonlinear model-based approach 被引量:2
5
作者 Cong CHEN Jun ZOU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2021年第9期681-694,共14页
Soft robotics,compared with their rigid counterparts,are able to adapt to uncharted environments,are superior in safe human-robot interactions,and have low cost,owing to the native compliance of the soft materials.How... Soft robotics,compared with their rigid counterparts,are able to adapt to uncharted environments,are superior in safe human-robot interactions,and have low cost,owing to the native compliance of the soft materials.However,customized complex structures,as well as the nonlinear and viscoelastic soft materials,pose a great challenge to accurate modeling and control of soft robotics,and impose restrictions on further applications.In this study,a unified modeling strategy is proposed to establish a complete dynamic model of the most widely used pneumatic soft bending actuator.First,a novel empirical nonlinear model with parametric and nonlinear uncertainties is identified to describe the nonlinear behaviors of pneumatic soft bending actuators.Second,an inner pressure dynamic model of a pneumatic soft bending actuator is established by introducing a modified valve flow rate model of the unbalanced pneumatic proportional valves.Third,an adaptive robust controller is designed using a backstepping method to handle and update the nonlinear and uncertain system.Finally,the experimental results of comparative trajectory tracking control indicate the validity of the proposed modeling and control method. 展开更多
关键词 pneumatic soft bending actuator Empirical nonlinear model identification Unbalanced pneumatic proportional valve modeling Adaptive robust control Trajectory tracking
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部