期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Degradation of dichloromethane by an isolated strain Pandoraea pnomenusa and its performance in a biotrickling filter 被引量:2
1
作者 Jianming Yu Wenji Cai +1 位作者 Zhuowei Cheng Jianmeng Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第5期1108-1117,共10页
A strain Pandoraea pnomenusa LX-1 that uses dichloromethane (DCM) as sole carbon and energy source has been isolated and identified in our laboratory. The optimum aerobic biodegradation of DCM in batch culture was e... A strain Pandoraea pnomenusa LX-1 that uses dichloromethane (DCM) as sole carbon and energy source has been isolated and identified in our laboratory. The optimum aerobic biodegradation of DCM in batch culture was evaluated by response surface methodology. Maximum biodegradation (5.35 mg/(L.hr)) was achieved under cultivation at 32.8℃, pH 7.3, and 0.66% NaC1. The growth and biodegradation processes were well fitted by Haldane's kinetic model, yielding maximum specific growth and degradation rates of 0.133 hr^-1 and 0.856 hr^-1, respectively. The microorganism efficiently degraded a mixture of DCM and coexisting components (benzene, toluene and chlorobenzene). The carbon recovery (52.80%-94.59%) indicated that the targets were predominantly mineralized and incorporated into cell materials. Electron acceptors increased the DCM biodegradation rate in the following order: mixed 〉 oxygen 〉 iron 〉 sulfate 〉 nitrate. The highest dechlorination rate was 0.365 mg C1-/(hr.mg biomass), obtained in the presence of mixed electron acceptors. Removal was achieved in a continuous biotrickling filter at 56%-85% efficiency, with a mineralization rate of 75.2%. Molecular biology techniques revealed the predominant strain as P. pnomenusa LX-1. These results clearly demonstrated the effectiveness of strain LX-1 in treating DCM-containing industrial effluents. As such, the strain is a strong candidate for remediation of DCM coexisting with other organic compounds. 展开更多
关键词 DICHLOROMETHANE Pandoraea pnomenusa biodegradation characteristics removal performance carbon balance
原文传递
潘多拉菌LX-1菌株对二氯甲烷的降解特性研究 被引量:4
2
作者 傅凌霄 於建明 +4 位作者 成卓韦 蒋轶锋 陈建孟 顾信娜 朱润晔 《环境科学学报》 CAS CSCD 北大核心 2012年第7期1563-1571,共9页
从某污水处理厂的活性污泥中分离筛选到一株能以二氯甲烷为唯一碳源和能源生长的好氧降解菌LX-1(Pandoraea pnomenusa LX-1).单因素试验表明,适宜菌株LX-1生长的pH和环境温度分别为7.0和35℃,培养基里添加1%的NaCl有助于LX-1的生长及对... 从某污水处理厂的活性污泥中分离筛选到一株能以二氯甲烷为唯一碳源和能源生长的好氧降解菌LX-1(Pandoraea pnomenusa LX-1).单因素试验表明,适宜菌株LX-1生长的pH和环境温度分别为7.0和35℃,培养基里添加1%的NaCl有助于LX-1的生长及对DCM的降解,二氯甲烷的最大耐受浓度达到了1500mg·L-1.菌株LX-1降解1mg二氯甲烷能产生0.8083mg Cl-和0.3838mg CO2,脱氯率和矿化率分别达到了96.8%和74.15%.培养液中可溶性有机碳含量随降解时间变化呈上升趋势,pH呈下降趋势,结合相关文献报道,推测菌株在代谢二氯甲烷的过程中产生了水溶性小分子酸类(如甲酸)等结构较为简单的有机物,它们最终将被矿化为CO2、H2O和细胞生物量. 展开更多
关键词 二氯甲烷 Pandoraea pnomenusa 降解特性 矿化率
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部