Registrations based on the manual placement of spherical targets are still being employed by many professionals in the industry.However,the placement of those targets usually relies solely on personal experience witho...Registrations based on the manual placement of spherical targets are still being employed by many professionals in the industry.However,the placement of those targets usually relies solely on personal experience without scientific evidence supported by numerical analysis.This paper presents a comprehensive investigation,based on Monte Carlo simulation,into determining the optimal number and positions for efficient target placement in typical scenes consisting of a pair of facades.It demonstrates new check-up statistical rules and geometrical constraints that can effectively extract and analyze massive simulations of unregistered point clouds and their corresponding registrations.More than 6×10^(7) sets of the registrations were simulated,whereas more than IOO registrations with real data were used to verify the results of simulation.The results indicated that using five spherical targets is the best choice for the registration of a large typical registration site consisting of two vertical facades and a ground,when there is only a box set of spherical targets available.As a result,the users can avoid placing extra targets to achieve insignificant improvements in registration accuracy.The results also suggest that the higher registration accuracy can be obtained when the ratio between the facade-to-target distance and target-to-scanner distance is approximately 3:2.Therefore,the targets should be placed closer to the scanner rather than in the middle between the facades and the scanner,contradicting to the traditional thought. Besides,the results reveal that the accuracy can be increased by setting the largest projected triangular area of the targets to be large.展开更多
Non-rigid registration of point clouds is still far from stable,especially for the largely deformed one.Sparse initial correspondences are often adopted to facilitate the process.However,there are few studies on how t...Non-rigid registration of point clouds is still far from stable,especially for the largely deformed one.Sparse initial correspondences are often adopted to facilitate the process.However,there are few studies on how to build them automatically.Therefore,in this paper,we propose a robust method to compute such priors automatically,where a global and local combined strategy is adopted.These priors in different degrees of deformation are obtained by the locally geometrical-consistent point matches from the globally structural-consistent region correspondences.To further utilize the matches,this paper also proposes a novel registration method based on the Coherent Point Drift framework.This method takes both the spatial proximity and local structural consistency of the priors as supervision of the registration process and thus obtains a robust alignment for clouds with significantly different deformations.Qualitative and quantitative experiments demonstrate the advantages of the proposed method.展开更多
In image-guided radiation therapy, extracting features from medical point cloud is the key technique for multimodality registration. This novel framework, denoted Control Point Net (CPN), provides an alternative to th...In image-guided radiation therapy, extracting features from medical point cloud is the key technique for multimodality registration. This novel framework, denoted Control Point Net (CPN), provides an alternative to the common applications of manually designed keypoint descriptors for coarse point cloud registration. The CPN directly consumes a point cloud, divides it into equally spaced 3D voxels and transforms the points within each voxel into a unified feature representation through voxel feature encoding (VFE) layer. Then all volumetric representations are aggregated by Weighted Extraction Layer which selectively extracts features and synthesize into global descriptors and coordinates of control points. Utilizing global descriptors instead of local features allows the available geometrical data to be better exploited to improve the robustness and precision. Specifically, CPN unifies feature extraction and clustering into a single network, omitting time-consuming feature matching procedure. The algorithm is tested on point cloud datasets generated from CT images. Experiments and comparisons with the state-of-the-art descriptors demonstrate that CPN is highly discriminative, efficient, and robust to noise and density changes.展开更多
Point cloud registration aims to find a rigid transformation for aligning one point cloud to another.Such registration is a fundamental problem in computer vision and robotics,and has been widely used in various appli...Point cloud registration aims to find a rigid transformation for aligning one point cloud to another.Such registration is a fundamental problem in computer vision and robotics,and has been widely used in various applications,including 3D reconstruction,simultaneous localization and mapping,and autonomous driving.Over the last decades,numerous researchers have devoted themselves to tackling this challenging problem.The success of deep learning in high-level vision tasks has recently been extended to different geometric vision tasks.Various types of deep learning based point cloud registration methods have been proposed to exploit different aspects of the problem.However,a comprehensive overview of these approaches remains missing.To this end,in this paper,we summarize the recent progress in this area and present a comprehensive overview regarding deep learning based point cloud registration.We classify the popular approaches into different categories such as correspondences-based and correspondences-free approaches,with effective modules,i.e.,feature extractor,matching,outlier rejection,and motion estimation modules.Furthermore,we discuss the merits and demerits of such approaches in detail.Finally,we provide a systematic and compact framework for currently proposed methods and discuss directions of future research.展开更多
Forest is one of the most challenging environments to be recorded in a three-dimensional(3D)digitized geometrical representation,because of the size and the complexity of the environment and the data-acquisition const...Forest is one of the most challenging environments to be recorded in a three-dimensional(3D)digitized geometrical representation,because of the size and the complexity of the environment and the data-acquisition constraints brought by on-site conditions.Previous studies have indicated that the data-acquisition pattern can have more influence on the registration results than other factors.In practice,the ideal short-baseline observations,i.e.,the dense collection mode,is rarely feasible,considering the low accessibility in forest environments and the commonly limited labor and time resources.The wide-baseline observations that cover a forest site using a few folds less observations than short-baseline observations,are therefore more preferable and commonly applied.Nevertheless,the wide-baseline approach is more challenging for data registration since it typically lacks the required sufficient overlaps between datasets.Until now,a robust automated registration solution that is independent of special hardware requirements has still been missing.That is,the registration accuracy is still far from the required level,and the information extractable from the merged point cloud using automated registration could not match that from the merged point cloud using manual registration.This paper proposes a discrete overlap search(DOS)method to find correspondences in the point clouds to solve the low-overlap problem in the wide-baseline point clouds.The proposed automatic method uses potential correspondences from both original data and selected feature points to reconstruct rough observation geometries without external knowledge and to retrieve precise registration parameters at data-level.An extensive experiment was carried out with 24 forest datasets of different conditions categorized in three difficulty levels.The performance of the proposed method was evaluated using various accuracy criteria,as well as based on data acquired from different hardware,platforms,viewing perspectives,and at different points of time.The proposed method achieved a 3D registration accuracy at a 0.50-cm level in all difficulty categories using static terrestrial acquisitions.In the terrestrial-aerial registration,data sets were collected from different sensors and at different points of time with scene changes,and a registration accuracy at the raw data geometric accuracy level was achieved.These results represent the highest automated registration accuracy and the strictest evaluation so far.The proposed method is applicable in multiple scenarios,such as 1)the global positioning of individual under-canopy observations,which is one of the main challenges in applying terrestrial observations lacking a global context,2)the fusion of point clouds acquired from terrestrial and aerial perspectives,which is required in order to achieve a complete forest observation,3)mobile mapping using a new stop-and-go approach,which solves the problems of lacking mobility and slow data collection in static terrestrial measurements as well as the data-quality issue in the continuous mobile approach.Furthermore,this work proposes a new error estimate that units all parameter-level errors into a single quantity and compensates for the downsides of the widely used parameter-and object-level error estimates;it also proposes a new deterministic point sets registration method as an alternative to the popular sampling methods.展开更多
Compared with the pair-wise registration of point clouds,multi-view point cloud registration is much less studied.In this dissertation,a disordered multi-view point cloud registration method based on the soft trimmed ...Compared with the pair-wise registration of point clouds,multi-view point cloud registration is much less studied.In this dissertation,a disordered multi-view point cloud registration method based on the soft trimmed deep network is proposed.In this method,firstly,the expression ability of feature extraction module is improved and the registration accuracy is increased by enhancing feature extraction network with the point pair feature.Secondly,neighborhood and angle similarities are used to measure the consistency of candidate points to surrounding neighborhoods.By combining distance consistency and high dimensional feature consistency,our network introduces the confidence estimation module of registration,so the point cloud trimmed problem can be converted to candidate for the degree of confidence estimation problem,achieving the pair-wise registration of partially overlapping point clouds.Thirdly,the results from pair-wise registration are fed into the model fusion to achieve the rough registration of multi-view point clouds.Finally,the hierarchical clustering is used to iteratively optimize the clustering center model by gradually increasing the number of clustering categories and performing clustering and registration alternately.This method achieves rough point cloud registration quickly in the early stage,improves the accuracy of multi-view point cloud registration in the later stage,and makes full use of global information to achieve robust and accurate multi-view registration without initial value.展开更多
In the domain of point cloud registration,the coarse-to-fine feature matching paradigm has received significant attention due to its impressive performance.This paradigm involves a two-step process:first,the extractio...In the domain of point cloud registration,the coarse-to-fine feature matching paradigm has received significant attention due to its impressive performance.This paradigm involves a two-step process:first,the extraction of multilevel features,and subsequently,the propagation of correspondences from coarse to fine levels.However,this approach faces two notable limitations.Firstly,the use of the Dual Softmax operation may promote one-to-one correspondences between superpoints,inadvertently excluding valuable correspondences.Secondly,it is crucial to closely examine the overlapping areas between point clouds,as only correspondences within these regions decisively determine the actual transformation.Considering these issues,we propose OAAFormer to enhance correspondence quality.On the one hand,we introduce a soft matching mechanism to facilitate the propagation of potentially valuable correspondences from coarse to fine levels.On the other hand,we integrate an overlapping region detection module to minimize mismatches to the greatest extent possible.Furthermore,we introduce a region-wise attention module with linear complexity during the fine-level matching phase,designed to enhance the discriminative capabilities of the extracted features.Tests on the challenging 3DLoMatch benchmark demonstrate that our approach leads to a substantial increase of about 7%in the inlier ratio,as well as an enhancement of 2%-4%in registration recall.Finally,to accelerate the prediction process,we replace the Conventional Random Sample Consensus(RANSAC)algorithm with the selection of a limited yet representative set of high-confidence correspondences,resulting in a 100 times speedup while still maintaining comparable registration performance.展开更多
Estimating rigid transformation using noisy correspondences is critical to feature-based point cloud registration.Recently,a series of studies have attempted to combine traditional robust model fitting with deep learn...Estimating rigid transformation using noisy correspondences is critical to feature-based point cloud registration.Recently,a series of studies have attempted to combine traditional robust model fitting with deep learning.Among them,DHVR proposed a hough voting-based method,achieving new state-of-the-art performance.However,we find voting on rotation and translation simultaneously hinders achieving better performance.Therefore,we proposed a new hough voting-based method,which decouples rotation and translation space.Specifically,we first utilize hough voting and a neural network to estimate rotation.Then based on good initialization on rotation,we can easily obtain accurate rigid transformation.Extensive experiments on 3DMatch and 3DLoMatch datasets show that our method achieves comparable performances over the state-of-the-art methods.We further demonstrate the generalization of our method by experimenting on KITTI dataset.展开更多
We propose a new framework for the sampling,compression,and analysis of distributions of point sets and other geometric objects embedded in Euclidean spaces.Our approach involves constructing a tensor called the RaySe...We propose a new framework for the sampling,compression,and analysis of distributions of point sets and other geometric objects embedded in Euclidean spaces.Our approach involves constructing a tensor called the RaySense sketch,which captures nearest neighbors from the underlying geometry of points along a set of rays.We explore various operations that can be performed on the RaySense sketch,leading to different properties and potential applications.Statistical information about the data set can be extracted from the sketch,independent of the ray set.Line integrals on point sets can be efficiently computed using the sketch.We also present several examples illustrating applications of the proposed strategy in practical scenarios.展开更多
As point cloud of one whole vehicle body has the traits of large geometric dimension, huge data and rigorous reverse precision, one pretreatment algorithm on automobile body point cloud is put forward. The basic idea ...As point cloud of one whole vehicle body has the traits of large geometric dimension, huge data and rigorous reverse precision, one pretreatment algorithm on automobile body point cloud is put forward. The basic idea of the registration algorithm based on the skeleton points is to construct the skeleton points of the whole vehicle model and the mark points of the separate point cloud, to search the mapped relationship between skeleton points and mark points using congruence triangle method and to match the whole vehicle point cloud using the improved iterative closed point (ICP) algorithm. The data reduction algorithm, based on average square root of distance, condenses data by three steps, computing datasets' average square root of distance in sampling cube grid, sorting order according to the value computed from the first step, choosing sampling percentage. The accuracy of the two algorithms above is proved by a registration and reduction example of whole vehicle point cloud of a certain light truck.展开更多
Estimating an accurate six-degree-of-freedom(6-Do F)pose from correspondences with outliers remains a critical issue to 3D rigid registration.Random sample consensus(RANSAC)and its variants are popular solutions to th...Estimating an accurate six-degree-of-freedom(6-Do F)pose from correspondences with outliers remains a critical issue to 3D rigid registration.Random sample consensus(RANSAC)and its variants are popular solutions to this problem.Although there have been a number of RANSAC-fashion estimators,two issues remain unsolved.First,it is unclear which estimator is more appropriate to a particular application.Second,the impacts of different sampling strategies,hypothesis generation methods,hypothesis evaluation metrics,and stop criteria on the overall estimators remain ambiguous.This work fills these gaps by first considering six existing RANSAC-fashion methods and then proposing eight variants for a comprehensive evaluation.The objective is to thoroughly compare estimators in the RANSAC family,and evaluate the effects of each key stage on the eventual 6-Do F pose estimation performance.Experiments have been carried out on four standard datasets with different application scenarios,data modalities,and nuisances.They provide us with input correspondence sets with a variety of inlier ratios,spatial distributions,and scales.Based on the experimental results,we summarize remarkable outcomes and valuable findings,so as to give practical instructions to real-world applications,and highlight current bottlenecks and potential solutions in this research realm.展开更多
Multi-view laser radar (ladar) data registration in obscure environments is an important research field of obscured target detection from air to ground. There are few overlap regions of the observational data in dif...Multi-view laser radar (ladar) data registration in obscure environments is an important research field of obscured target detection from air to ground. There are few overlap regions of the observational data in different views because of the occluder, so the multi-view data registration is rather difficult. Through indepth analyses of the typical methods and problems, it is obtained that the sequence registration is more appropriate, but needs to improve the registration accuracy. On this basis, a multi-view data registration algorithm based on aggregating the adjacent frames, which are already registered, is proposed. It increases the overlap region between the pending registration frames by aggregation and further improves the registration accuracy. The experiment results show that the proposed algorithm can effectively register the multi-view ladar data in the obscure environment, and it also has a greater robustness and a higher registration accuracy compared with the sequence registration under the condition of equivalent operating efficiency.展开更多
Background There are many regularly shaped objects in artificial environments.It is difficult to distinguish the poses of these objects when only geometric information is used.With the development of sensor technologi...Background There are many regularly shaped objects in artificial environments.It is difficult to distinguish the poses of these objects when only geometric information is used.With the development of sensor technologies,inclusion of other information can be used to solve this problem.Methods We propose an algorithm to register point clouds by integrating color information.The key idea of the algorithm is to jointly optimize the dense and edge terms.The dense term was built in a manner similar to that of the iterative closest point algorithm.To build the edge term,we extracted the edges of the images obtained by projecting point clouds.The edge term prevents the point clouds from sliding during registration.We used this loosely coupled method to fuse geometric and color information.Results The results of the experiments showed that the edge image approach improves precision,and the algorithm is robust.展开更多
基金Key Research and Development Program of Guangdong Province (No.2020B0101130009)
文摘Registrations based on the manual placement of spherical targets are still being employed by many professionals in the industry.However,the placement of those targets usually relies solely on personal experience without scientific evidence supported by numerical analysis.This paper presents a comprehensive investigation,based on Monte Carlo simulation,into determining the optimal number and positions for efficient target placement in typical scenes consisting of a pair of facades.It demonstrates new check-up statistical rules and geometrical constraints that can effectively extract and analyze massive simulations of unregistered point clouds and their corresponding registrations.More than 6×10^(7) sets of the registrations were simulated,whereas more than IOO registrations with real data were used to verify the results of simulation.The results indicated that using five spherical targets is the best choice for the registration of a large typical registration site consisting of two vertical facades and a ground,when there is only a box set of spherical targets available.As a result,the users can avoid placing extra targets to achieve insignificant improvements in registration accuracy.The results also suggest that the higher registration accuracy can be obtained when the ratio between the facade-to-target distance and target-to-scanner distance is approximately 3:2.Therefore,the targets should be placed closer to the scanner rather than in the middle between the facades and the scanner,contradicting to the traditional thought. Besides,the results reveal that the accuracy can be increased by setting the largest projected triangular area of the targets to be large.
基金supported by Natural Science Foundation of Anhui Province (2108085MF210,1908085MF187)Key Natural Science Fund of Department of Eduction of Anhui Province (KJ2021A0042)Natural Social Science Foundation of China (19BTY091).
文摘Non-rigid registration of point clouds is still far from stable,especially for the largely deformed one.Sparse initial correspondences are often adopted to facilitate the process.However,there are few studies on how to build them automatically.Therefore,in this paper,we propose a robust method to compute such priors automatically,where a global and local combined strategy is adopted.These priors in different degrees of deformation are obtained by the locally geometrical-consistent point matches from the globally structural-consistent region correspondences.To further utilize the matches,this paper also proposes a novel registration method based on the Coherent Point Drift framework.This method takes both the spatial proximity and local structural consistency of the priors as supervision of the registration process and thus obtains a robust alignment for clouds with significantly different deformations.Qualitative and quantitative experiments demonstrate the advantages of the proposed method.
文摘In image-guided radiation therapy, extracting features from medical point cloud is the key technique for multimodality registration. This novel framework, denoted Control Point Net (CPN), provides an alternative to the common applications of manually designed keypoint descriptors for coarse point cloud registration. The CPN directly consumes a point cloud, divides it into equally spaced 3D voxels and transforms the points within each voxel into a unified feature representation through voxel feature encoding (VFE) layer. Then all volumetric representations are aggregated by Weighted Extraction Layer which selectively extracts features and synthesize into global descriptors and coordinates of control points. Utilizing global descriptors instead of local features allows the available geometrical data to be better exploited to improve the robustness and precision. Specifically, CPN unifies feature extraction and clustering into a single network, omitting time-consuming feature matching procedure. The algorithm is tested on point cloud datasets generated from CT images. Experiments and comparisons with the state-of-the-art descriptors demonstrate that CPN is highly discriminative, efficient, and robust to noise and density changes.
基金Supported by the National Key Research and Development Program of China under Grant(2018AAA0102803)the National Natural Science Foundation of China under Grants(61871325,61420106007,61671387).
文摘Point cloud registration aims to find a rigid transformation for aligning one point cloud to another.Such registration is a fundamental problem in computer vision and robotics,and has been widely used in various applications,including 3D reconstruction,simultaneous localization and mapping,and autonomous driving.Over the last decades,numerous researchers have devoted themselves to tackling this challenging problem.The success of deep learning in high-level vision tasks has recently been extended to different geometric vision tasks.Various types of deep learning based point cloud registration methods have been proposed to exploit different aspects of the problem.However,a comprehensive overview of these approaches remains missing.To this end,in this paper,we summarize the recent progress in this area and present a comprehensive overview regarding deep learning based point cloud registration.We classify the popular approaches into different categories such as correspondences-based and correspondences-free approaches,with effective modules,i.e.,feature extractor,matching,outlier rejection,and motion estimation modules.Furthermore,we discuss the merits and demerits of such approaches in detail.Finally,we provide a systematic and compact framework for currently proposed methods and discuss directions of future research.
基金financial support from the National Natural Science Foundation of China(Grant Nos.32171789,32211530031)Wuhan University(No.WHUZZJJ202220)Academy of Finland(Nos.334060,334829,331708,344755,337656,334830,293389/314312,334830,319011)。
文摘Forest is one of the most challenging environments to be recorded in a three-dimensional(3D)digitized geometrical representation,because of the size and the complexity of the environment and the data-acquisition constraints brought by on-site conditions.Previous studies have indicated that the data-acquisition pattern can have more influence on the registration results than other factors.In practice,the ideal short-baseline observations,i.e.,the dense collection mode,is rarely feasible,considering the low accessibility in forest environments and the commonly limited labor and time resources.The wide-baseline observations that cover a forest site using a few folds less observations than short-baseline observations,are therefore more preferable and commonly applied.Nevertheless,the wide-baseline approach is more challenging for data registration since it typically lacks the required sufficient overlaps between datasets.Until now,a robust automated registration solution that is independent of special hardware requirements has still been missing.That is,the registration accuracy is still far from the required level,and the information extractable from the merged point cloud using automated registration could not match that from the merged point cloud using manual registration.This paper proposes a discrete overlap search(DOS)method to find correspondences in the point clouds to solve the low-overlap problem in the wide-baseline point clouds.The proposed automatic method uses potential correspondences from both original data and selected feature points to reconstruct rough observation geometries without external knowledge and to retrieve precise registration parameters at data-level.An extensive experiment was carried out with 24 forest datasets of different conditions categorized in three difficulty levels.The performance of the proposed method was evaluated using various accuracy criteria,as well as based on data acquired from different hardware,platforms,viewing perspectives,and at different points of time.The proposed method achieved a 3D registration accuracy at a 0.50-cm level in all difficulty categories using static terrestrial acquisitions.In the terrestrial-aerial registration,data sets were collected from different sensors and at different points of time with scene changes,and a registration accuracy at the raw data geometric accuracy level was achieved.These results represent the highest automated registration accuracy and the strictest evaluation so far.The proposed method is applicable in multiple scenarios,such as 1)the global positioning of individual under-canopy observations,which is one of the main challenges in applying terrestrial observations lacking a global context,2)the fusion of point clouds acquired from terrestrial and aerial perspectives,which is required in order to achieve a complete forest observation,3)mobile mapping using a new stop-and-go approach,which solves the problems of lacking mobility and slow data collection in static terrestrial measurements as well as the data-quality issue in the continuous mobile approach.Furthermore,this work proposes a new error estimate that units all parameter-level errors into a single quantity and compensates for the downsides of the widely used parameter-and object-level error estimates;it also proposes a new deterministic point sets registration method as an alternative to the popular sampling methods.
文摘Compared with the pair-wise registration of point clouds,multi-view point cloud registration is much less studied.In this dissertation,a disordered multi-view point cloud registration method based on the soft trimmed deep network is proposed.In this method,firstly,the expression ability of feature extraction module is improved and the registration accuracy is increased by enhancing feature extraction network with the point pair feature.Secondly,neighborhood and angle similarities are used to measure the consistency of candidate points to surrounding neighborhoods.By combining distance consistency and high dimensional feature consistency,our network introduces the confidence estimation module of registration,so the point cloud trimmed problem can be converted to candidate for the degree of confidence estimation problem,achieving the pair-wise registration of partially overlapping point clouds.Thirdly,the results from pair-wise registration are fed into the model fusion to achieve the rough registration of multi-view point clouds.Finally,the hierarchical clustering is used to iteratively optimize the clustering center model by gradually increasing the number of clustering categories and performing clustering and registration alternately.This method achieves rough point cloud registration quickly in the early stage,improves the accuracy of multi-view point cloud registration in the later stage,and makes full use of global information to achieve robust and accurate multi-view registration without initial value.
基金supported by the National Natural Science Foundation of China under Grant Nos.62272277,U23A20312,and 62072284the National Key Technology Research and Development Program of the Ministry of Science and Technology of China under Grant No.2022YFB3303200the Natural Science Foundation of Shandong Province of China under Grant No.ZR2020MF036.
文摘In the domain of point cloud registration,the coarse-to-fine feature matching paradigm has received significant attention due to its impressive performance.This paradigm involves a two-step process:first,the extraction of multilevel features,and subsequently,the propagation of correspondences from coarse to fine levels.However,this approach faces two notable limitations.Firstly,the use of the Dual Softmax operation may promote one-to-one correspondences between superpoints,inadvertently excluding valuable correspondences.Secondly,it is crucial to closely examine the overlapping areas between point clouds,as only correspondences within these regions decisively determine the actual transformation.Considering these issues,we propose OAAFormer to enhance correspondence quality.On the one hand,we introduce a soft matching mechanism to facilitate the propagation of potentially valuable correspondences from coarse to fine levels.On the other hand,we integrate an overlapping region detection module to minimize mismatches to the greatest extent possible.Furthermore,we introduce a region-wise attention module with linear complexity during the fine-level matching phase,designed to enhance the discriminative capabilities of the extracted features.Tests on the challenging 3DLoMatch benchmark demonstrate that our approach leads to a substantial increase of about 7%in the inlier ratio,as well as an enhancement of 2%-4%in registration recall.Finally,to accelerate the prediction process,we replace the Conventional Random Sample Consensus(RANSAC)algorithm with the selection of a limited yet representative set of high-confidence correspondences,resulting in a 100 times speedup while still maintaining comparable registration performance.
基金supported by the National Natural Science Foundation of China (Grant No.62076070)the Science and Technology Innovation Action Plan of Shanghai (No.23S41900400).
文摘Estimating rigid transformation using noisy correspondences is critical to feature-based point cloud registration.Recently,a series of studies have attempted to combine traditional robust model fitting with deep learning.Among them,DHVR proposed a hough voting-based method,achieving new state-of-the-art performance.However,we find voting on rotation and translation simultaneously hinders achieving better performance.Therefore,we proposed a new hough voting-based method,which decouples rotation and translation space.Specifically,we first utilize hough voting and a neural network to estimate rotation.Then based on good initialization on rotation,we can easily obtain accurate rigid transformation.Extensive experiments on 3DMatch and 3DLoMatch datasets show that our method achieves comparable performances over the state-of-the-art methods.We further demonstrate the generalization of our method by experimenting on KITTI dataset.
基金supported by the National Science Foundation(Grant No.DMS-1440415)partially supported by a grant from the Simons Foundation,NSF Grants DMS-1720171 and DMS-2110895a Discovery Grant from Natural Sciences and Engineering Research Council of Canada.
文摘We propose a new framework for the sampling,compression,and analysis of distributions of point sets and other geometric objects embedded in Euclidean spaces.Our approach involves constructing a tensor called the RaySense sketch,which captures nearest neighbors from the underlying geometry of points along a set of rays.We explore various operations that can be performed on the RaySense sketch,leading to different properties and potential applications.Statistical information about the data set can be extracted from the sketch,independent of the ray set.Line integrals on point sets can be efficiently computed using the sketch.We also present several examples illustrating applications of the proposed strategy in practical scenarios.
基金This project is supported by Provincial Technology Cooperation Program of Yunnan,China(No.2003EAAAA00D043).
文摘As point cloud of one whole vehicle body has the traits of large geometric dimension, huge data and rigorous reverse precision, one pretreatment algorithm on automobile body point cloud is put forward. The basic idea of the registration algorithm based on the skeleton points is to construct the skeleton points of the whole vehicle model and the mark points of the separate point cloud, to search the mapped relationship between skeleton points and mark points using congruence triangle method and to match the whole vehicle point cloud using the improved iterative closed point (ICP) algorithm. The data reduction algorithm, based on average square root of distance, condenses data by three steps, computing datasets' average square root of distance in sampling cube grid, sorting order according to the value computed from the first step, choosing sampling percentage. The accuracy of the two algorithms above is proved by a registration and reduction example of whole vehicle point cloud of a certain light truck.
基金supported in part by the National Natural Science Foundation of China(NFSC)(62002295,U19B2037)China Postdoctoral Science Foundation(2020M673319)+1 种基金Shaanxi Provincial Key R&D Program(2021KWZ-03)the Natural Science Basic Research Plan in Shaanxi Province of China(2021JQ-290,2020JQ-210)。
文摘Estimating an accurate six-degree-of-freedom(6-Do F)pose from correspondences with outliers remains a critical issue to 3D rigid registration.Random sample consensus(RANSAC)and its variants are popular solutions to this problem.Although there have been a number of RANSAC-fashion estimators,two issues remain unsolved.First,it is unclear which estimator is more appropriate to a particular application.Second,the impacts of different sampling strategies,hypothesis generation methods,hypothesis evaluation metrics,and stop criteria on the overall estimators remain ambiguous.This work fills these gaps by first considering six existing RANSAC-fashion methods and then proposing eight variants for a comprehensive evaluation.The objective is to thoroughly compare estimators in the RANSAC family,and evaluate the effects of each key stage on the eventual 6-Do F pose estimation performance.Experiments have been carried out on four standard datasets with different application scenarios,data modalities,and nuisances.They provide us with input correspondence sets with a variety of inlier ratios,spatial distributions,and scales.Based on the experimental results,we summarize remarkable outcomes and valuable findings,so as to give practical instructions to real-world applications,and highlight current bottlenecks and potential solutions in this research realm.
文摘Multi-view laser radar (ladar) data registration in obscure environments is an important research field of obscured target detection from air to ground. There are few overlap regions of the observational data in different views because of the occluder, so the multi-view data registration is rather difficult. Through indepth analyses of the typical methods and problems, it is obtained that the sequence registration is more appropriate, but needs to improve the registration accuracy. On this basis, a multi-view data registration algorithm based on aggregating the adjacent frames, which are already registered, is proposed. It increases the overlap region between the pending registration frames by aggregation and further improves the registration accuracy. The experiment results show that the proposed algorithm can effectively register the multi-view ladar data in the obscure environment, and it also has a greater robustness and a higher registration accuracy compared with the sequence registration under the condition of equivalent operating efficiency.
文摘Background There are many regularly shaped objects in artificial environments.It is difficult to distinguish the poses of these objects when only geometric information is used.With the development of sensor technologies,inclusion of other information can be used to solve this problem.Methods We propose an algorithm to register point clouds by integrating color information.The key idea of the algorithm is to jointly optimize the dense and edge terms.The dense term was built in a manner similar to that of the iterative closest point algorithm.To build the edge term,we extracted the edges of the images obtained by projecting point clouds.The edge term prevents the point clouds from sliding during registration.We used this loosely coupled method to fuse geometric and color information.Results The results of the experiments showed that the edge image approach improves precision,and the algorithm is robust.