为了实现机器人焊接的免示教路径规划,结合深度学习与点云处理技术,开发了一种高效、稳定的焊缝智能识别算法.首先,采用ETH(Eye-to-hand)构型的工业级3D相机获取焊件周围的二维图像和3D点云模型,利用预先训练的YOLOv8目标检测模型识别...为了实现机器人焊接的免示教路径规划,结合深度学习与点云处理技术,开发了一种高效、稳定的焊缝智能识别算法.首先,采用ETH(Eye-to-hand)构型的工业级3D相机获取焊件周围的二维图像和3D点云模型,利用预先训练的YOLOv8目标检测模型识别焊件所在的ROI区域(region of interest,ROI),模型识别精度为99.5%,从而实现快速剔除背景点云,并基于RANSAC平面拟合、欧式聚类等点云处理算法,对ROI区域的三维点云进行焊缝空间位置的精细识别;最后根据手眼标定结果转化为机器人用户坐标系下的焊接轨迹.结果表明,文中所开发的算法可实现随机摆放的焊缝自动识别和焊接机器人路径规划,生成的轨迹与人工示教轨迹效果相当,偏差在0.5 mm以内.展开更多
为满足高通量作物表型分析需求,提升三维点云重建效率和精度,该研究针对不同作物、不同生育时期、不同植株部位(地上部和根系),基于研发的多视角自动成像系统和SFM(structure from motion)-MVS(multi-view stereo)算法,采用不同视角和...为满足高通量作物表型分析需求,提升三维点云重建效率和精度,该研究针对不同作物、不同生育时期、不同植株部位(地上部和根系),基于研发的多视角自动成像系统和SFM(structure from motion)-MVS(multi-view stereo)算法,采用不同视角和不同相机数获取的图像重建作物三维点云,通过重建效率和精度(Hausdorff距离)评估,以及基于点云提取表型参数(株高、幅宽、凸包体积和总表面积)的可靠性评价,优化作物三维点云重建策略。结果显示,对于结构相对稀松、遮挡较少的盆栽植株(苗期、蕾薹期、盛花期、成熟期油菜)、结构相对紧凑、遮挡较多的植株地上部(花铃期棉花、抽穗期水稻、拔节期和灌浆期小麦)以及器官密集、遮挡严重且有较多细长结构的地上部和根系(分蘖期小麦和成熟期水稻地上部、成熟期玉米和油菜根系),分别采用3~4、6和10个相机为其最优重建策略(Hausdorff距离小于或接近0.20 cm,且重建时长和Hausdorff距离归一化值之和最小)。采用不少于4个相机获取的图像重建作物三维点云,可提取较为可靠的表型参数(决定系数R2>0.90,相对均方根误差RRMSE≤9%)。该研究提出的最优重建策略平衡了自动成像系统构建成本、三维重建效率和精度以及适用植株复杂程度,为实现多种作物高效、低成本、高精度三维重建和表型参数提取提供了重要依据。展开更多
文摘为了实现机器人焊接的免示教路径规划,结合深度学习与点云处理技术,开发了一种高效、稳定的焊缝智能识别算法.首先,采用ETH(Eye-to-hand)构型的工业级3D相机获取焊件周围的二维图像和3D点云模型,利用预先训练的YOLOv8目标检测模型识别焊件所在的ROI区域(region of interest,ROI),模型识别精度为99.5%,从而实现快速剔除背景点云,并基于RANSAC平面拟合、欧式聚类等点云处理算法,对ROI区域的三维点云进行焊缝空间位置的精细识别;最后根据手眼标定结果转化为机器人用户坐标系下的焊接轨迹.结果表明,文中所开发的算法可实现随机摆放的焊缝自动识别和焊接机器人路径规划,生成的轨迹与人工示教轨迹效果相当,偏差在0.5 mm以内.
文摘为满足高通量作物表型分析需求,提升三维点云重建效率和精度,该研究针对不同作物、不同生育时期、不同植株部位(地上部和根系),基于研发的多视角自动成像系统和SFM(structure from motion)-MVS(multi-view stereo)算法,采用不同视角和不同相机数获取的图像重建作物三维点云,通过重建效率和精度(Hausdorff距离)评估,以及基于点云提取表型参数(株高、幅宽、凸包体积和总表面积)的可靠性评价,优化作物三维点云重建策略。结果显示,对于结构相对稀松、遮挡较少的盆栽植株(苗期、蕾薹期、盛花期、成熟期油菜)、结构相对紧凑、遮挡较多的植株地上部(花铃期棉花、抽穗期水稻、拔节期和灌浆期小麦)以及器官密集、遮挡严重且有较多细长结构的地上部和根系(分蘖期小麦和成熟期水稻地上部、成熟期玉米和油菜根系),分别采用3~4、6和10个相机为其最优重建策略(Hausdorff距离小于或接近0.20 cm,且重建时长和Hausdorff距离归一化值之和最小)。采用不少于4个相机获取的图像重建作物三维点云,可提取较为可靠的表型参数(决定系数R2>0.90,相对均方根误差RRMSE≤9%)。该研究提出的最优重建策略平衡了自动成像系统构建成本、三维重建效率和精度以及适用植株复杂程度,为实现多种作物高效、低成本、高精度三维重建和表型参数提取提供了重要依据。