To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-sca...To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings.展开更多
A molecular vector-type descriptor containing 6 variables is used to describe the structure of aromatic hydrocarbons (AHs) and relate to normal boiling points (bp) of AHs. The col relation coefficient (R) between the ...A molecular vector-type descriptor containing 6 variables is used to describe the structure of aromatic hydrocarbons (AHs) and relate to normal boiling points (bp) of AHs. The col relation coefficient (R) between the estimated bp and experimental bp is 0.9988 and the root mean square error (RMS) is 7.907 degreesC for 66 AHs. The RMS obtained by cross-validation is 9.131 degreesC, which implies the relationship model having good prediction ability.展开更多
三维局部特征描述是三维计算机视觉中的重要任务.现实场景中包含噪声、遮挡和杂波等干扰,使得准确和鲁棒的三维局部特征描述具有很大的挑战性.为提高特征描述的性能,提出一种局部曲面变化统计直方图(local sur-face variation based sta...三维局部特征描述是三维计算机视觉中的重要任务.现实场景中包含噪声、遮挡和杂波等干扰,使得准确和鲁棒的三维局部特征描述具有很大的挑战性.为提高特征描述的性能,提出一种局部曲面变化统计直方图(local sur-face variation based statistics histogram,LSVSH)描述符.首先设计一种不依赖于局部参考轴(local reference axis,LRA)的新属性(称为曲率属性),增强描述符对LRA误差的稳健性;然后沿径向剖分局部空间,在每个子空间中统计3个角度属性和1个曲率属性生成LSVSH描述符,实现对局部曲面信息的全面稳健描述.在B3R,U3M,U3OR和QuLD这4个数据集上进行大量的实验,结果表明,LSVSH在4个数据集上的RPC下面积(the area under the recall-precision curve,AUCpr)值分别为0.95,0.70,0.54和0.10,优于现有的局部特征描述符的性能;在U3M数据集上的正确配准率和在U3OR数据集上的正确识别率分别达到70%和100%,验证了LSVSH应用于物体配准和识别任务上的有效性.展开更多
文中提出了一种基于四叉树的改进的ORB(Oriented FAST and Rotated BRIEF)特征提取算法,它能够解决图像特征提取过程中特征点过于集中而导致的图像局部特征信息丢失的问题。首先,将图片构造成图像金字塔来解决尺度不变性问题;然后,在每...文中提出了一种基于四叉树的改进的ORB(Oriented FAST and Rotated BRIEF)特征提取算法,它能够解决图像特征提取过程中特征点过于集中而导致的图像局部特征信息丢失的问题。首先,将图片构造成图像金字塔来解决尺度不变性问题;然后,在每一层金字塔图像上检测角点来提取特征点;接着,引入四叉树算法来均匀化分布特征点并计算特征点的方向和描述子;最后,以华硕深度摄像头(Xtion PRO)为实验工具,在室内环境下提取周边特征点,并将提取效果与其他方法进行对比,实验证明了所提算法在图像特征均匀化处理方面的快速性以及准确性。展开更多
文摘To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings.
基金Supported by the Key Program of National Natural Science Foundation of China (60634020), Doctoral Program Foundation of Ministry of Education of China (20050533028, 20070533132), Natural Science Foundation of Hunan Province (06J35145), and Program for New Century Excellent Talents in University (NCET-07-0867)
文摘A molecular vector-type descriptor containing 6 variables is used to describe the structure of aromatic hydrocarbons (AHs) and relate to normal boiling points (bp) of AHs. The col relation coefficient (R) between the estimated bp and experimental bp is 0.9988 and the root mean square error (RMS) is 7.907 degreesC for 66 AHs. The RMS obtained by cross-validation is 9.131 degreesC, which implies the relationship model having good prediction ability.
文摘三维局部特征描述是三维计算机视觉中的重要任务.现实场景中包含噪声、遮挡和杂波等干扰,使得准确和鲁棒的三维局部特征描述具有很大的挑战性.为提高特征描述的性能,提出一种局部曲面变化统计直方图(local sur-face variation based statistics histogram,LSVSH)描述符.首先设计一种不依赖于局部参考轴(local reference axis,LRA)的新属性(称为曲率属性),增强描述符对LRA误差的稳健性;然后沿径向剖分局部空间,在每个子空间中统计3个角度属性和1个曲率属性生成LSVSH描述符,实现对局部曲面信息的全面稳健描述.在B3R,U3M,U3OR和QuLD这4个数据集上进行大量的实验,结果表明,LSVSH在4个数据集上的RPC下面积(the area under the recall-precision curve,AUCpr)值分别为0.95,0.70,0.54和0.10,优于现有的局部特征描述符的性能;在U3M数据集上的正确配准率和在U3OR数据集上的正确识别率分别达到70%和100%,验证了LSVSH应用于物体配准和识别任务上的有效性.
文摘文中提出了一种基于四叉树的改进的ORB(Oriented FAST and Rotated BRIEF)特征提取算法,它能够解决图像特征提取过程中特征点过于集中而导致的图像局部特征信息丢失的问题。首先,将图片构造成图像金字塔来解决尺度不变性问题;然后,在每一层金字塔图像上检测角点来提取特征点;接着,引入四叉树算法来均匀化分布特征点并计算特征点的方向和描述子;最后,以华硕深度摄像头(Xtion PRO)为实验工具,在室内环境下提取周边特征点,并将提取效果与其他方法进行对比,实验证明了所提算法在图像特征均匀化处理方面的快速性以及准确性。