In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between p...In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between points is necessary. Therefore, a nearest neighbors search scheme, considering the local complexity of the processing point, is used to determinate the neighbors for each point in a point geometry. With the constructed virtual connectivity, the secret message can be embedded successfully after the vertex decimation and data embedding processes. The experimental results show that the proposed algorithm can preserve the advantages of previous work, including higher estimation accuracy, high embedding capacity, acceptable model distortion, and robustness against similarity transformation attacks. Most importantly, this work is the first 3D steganographic algorithm for point geometry with adaptation.展开更多
Point cloud compression is critical to deploy 3D representation of the physical world such as 3D immersive telepresence,autonomous driving,and cultural heritage preservation.However,point cloud data are distributed ir...Point cloud compression is critical to deploy 3D representation of the physical world such as 3D immersive telepresence,autonomous driving,and cultural heritage preservation.However,point cloud data are distributed irregularly and discontinuously in spatial and temporal domains,where redundant unoccupied voxels and weak correlations in 3D space make achieving efficient compression a challenging problem.In this paper,we propose a spatio-temporal context-guided algorithm for lossless point cloud geometry compression.The proposed scheme starts with dividing the point cloud into sliced layers of unit thickness along the longest axis.Then,it introduces a prediction method where both intraframe and inter-frame point clouds are available,by determining correspondences between adjacent layers and estimating the shortest path using the travelling salesman algorithm.Finally,the few prediction residual is efficiently compressed with optimal context-guided and adaptive fastmode arithmetic coding techniques.Experiments prove that the proposed method can effectively achieve low bit rate lossless compression of point cloud geometric information,and is suitable for 3D point cloud compression applicable to various types of scenes.展开更多
基金supported by the National Science Council under Grant No. NSC98-2221-E-468-017 and NSC 100-2221-E-468-023the Research Project of Asia University under Grant No. 100-A-04
文摘In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between points is necessary. Therefore, a nearest neighbors search scheme, considering the local complexity of the processing point, is used to determinate the neighbors for each point in a point geometry. With the constructed virtual connectivity, the secret message can be embedded successfully after the vertex decimation and data embedding processes. The experimental results show that the proposed algorithm can preserve the advantages of previous work, including higher estimation accuracy, high embedding capacity, acceptable model distortion, and robustness against similarity transformation attacks. Most importantly, this work is the first 3D steganographic algorithm for point geometry with adaptation.
文摘Point cloud compression is critical to deploy 3D representation of the physical world such as 3D immersive telepresence,autonomous driving,and cultural heritage preservation.However,point cloud data are distributed irregularly and discontinuously in spatial and temporal domains,where redundant unoccupied voxels and weak correlations in 3D space make achieving efficient compression a challenging problem.In this paper,we propose a spatio-temporal context-guided algorithm for lossless point cloud geometry compression.The proposed scheme starts with dividing the point cloud into sliced layers of unit thickness along the longest axis.Then,it introduces a prediction method where both intraframe and inter-frame point clouds are available,by determining correspondences between adjacent layers and estimating the shortest path using the travelling salesman algorithm.Finally,the few prediction residual is efficiently compressed with optimal context-guided and adaptive fastmode arithmetic coding techniques.Experiments prove that the proposed method can effectively achieve low bit rate lossless compression of point cloud geometric information,and is suitable for 3D point cloud compression applicable to various types of scenes.